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Abstract

We consider the reconstruction problem of a vector x0 ∈ Rn from a noisy linear observation
ȳ = Āx0 + w, where Ā ∈ Rm×n is random, using the elastic net method. Assuming that
the entries of Ā are drawn independently and identically from any distribution that belongs
to a large class, we prove the following universality result. In the high-dimensional asymptotic
setting, where n → ∞ and m

n → δ > 0, the normalized error of the elastic net minimizer
converges in probability to a limit, insensitive to the exact distribution that the entries are
drawn from. We also provide an explicit formula for the limit.

1 Background and Main Result
Consider the noisy linear observation model

ȳ = Āx0 + w ,

where x0 ∈ Rn is an unknown signal, Ā ∈ Rm×n is a known matrix that models the observation
mechanism, ȳ ∈ Rm are observations and w ∈ Rm is noise. The elastic net [ZH05] attempts to
reconstruct x0 by solving the following convex program, with regularization parameters λ, ρ > 0:

min
x∈Rn

[1
2

∥∥∥Āx− ȳ
∥∥∥2

2
+ λ ‖x‖1 + ρ

2 ‖x‖
2
2

]
. (1)

The elastic net reduces to the LASSO1 [Tib13] for ρ → 0, and to ridge regression as λ → 0. It
shares the good features of both of these approaches. In particular, the resulting estimate x̂ is sparse
because of the `1 term, but always uniquely defined due to the strong convexity of the regularizer.
The elastic net has been applied successfully in a number of domains [HTW15, WZZ06, SWM14].

Random sensing matrices Ā have attracted considerable amount of work because they offer
good sparsity-undersampling tradeoffs in compressed sensing applications, and they provide a use-
ful benchmark for deterministic constructions. In compressed sensing, it is popular to perform
reconstruction using the LASSO (ρ = 0) or the basis pursuit if the observations are noiseless
(ρ = 0, λ→ 0). Among other random matrix models, Gaussian matrices with i.i.d. entries proved
to be amenable to several analytic approaches starting with the seminal work of Donoho which used
∗This is the complete version of the conference paper [MN17].
†Department of Electrical Engineering and Department of Statistics, Stanford University
‡Department of Electrical Engineering, Stanford University
1In fact, the elastic net solution converges to one of the LASSO solutions as ρ → 0.
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high-dimensional polytope geometry [Don05, BM12, Sto13, OTH13, TAH16]. While the Gaussian
case is highly idealized, it was observed several times that predictions derived for this case are
excellent approximations for a large variety of matrix models. For instance, [DT09] accumulated
numerical evidence in this direction. It is expected that, for matrices A with i.i.d. entries, the
asymptotic error of the LASSO (as m,n → ∞) is independent of the entries distribution (under
suitable tail conditions). This surprising phenomenon is known as universality and has classic
analogues in probability and random matrix theory [Tao12].

In the last few years, various forms of universality have been proved for the LASSO and related
linear inverse problems [KM11, BLM+15, OT15] (see Section 1.4 for a discussion of these earlier
works). However, none of these papers establishes the above conjecture, namely universality of the
asymptotic estimation error of the LASSO.

In this paper we establish the analogous conjecture for the elastic net, for any ρ > 0. Specifically
we show that the normalized error of the elastic net minimizer converges in probability to a universal
limit, for sensing matrices Ā with i.i.d. entries, under the assumption that

√
mĀij has bounded

(4+ε)-th moment. We provide an explicit formula for this limit. As ρ→ 0, this formula reproduces
the known asymptotics for the LASSO [BM12].

1.1 Mathematical conventions

We use boldfaced lower-case letters (e.g. x) for vectors and boldface upper-case letters (e.g. M)
for matrices. As usual, N, R, and R+ denote the set of natural numbers, real numbers, and non-
negative real numbers respectively. For n ∈ N, [n] denotes the set {1, 2, ..., n}. For a set S ⊆ [n], S̄
denotes its complement [n] \S. For an event E , its complement is denoted by E{.

For x ∈ Rn and a set S ⊆ [n], xS denotes a vector in Rn in which its i-th entry is equal to xi
if i ∈ S and 0 otherwise. Likewise for M ∈ Rm×n, MS denotes a matrix in Rm×n in which its i-th
column is equal to the i-th column of M if i ∈ S and the all-zero column vector otherwise.

For u,v ∈ Rn, 〈u,v〉 =
∑n
i=1 uivi = uTv. We use I for the indicator function, i.e. I (Clause) is

equal to 1 if Clause is true and 0 otherwise. As usual, ‖x‖p and ‖M‖2 denote the p-norm of x and
the maximum singular value of M respectively.

We reserve the notations φ and Φ for the standard Gaussian probability density function and
cumulative distribution function respectively, i.e.

φ (x) = 1√
2π

exp
(
−x

2

2

)
, Φ (x) =

ˆ x

−∞
φ (t) dt.

We also use the phrase “with high probability” to indicate that the event occurs with probability
converging to 1 as n→∞.

We recall the definition of Wasserstein distance. For q ≥ 1, and µ, ν two probability measures
on R with finite q-th moment, letWq (µ, ν) denote their order-q Wasserstein distance on the metric
space (R,dist), where dist (x, y) = |x− y|. That is,

Wq (µ, ν) =
(

inf
λ∈Γ(µ,ν)

ˆ
|x− y|q dλ (x, y)

)1/q

,

where Γ (µ, ν) denotes the set of couplings of µ and ν.
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Following [BM11, BM12], we say that the function ψ : R2 → R is pseudo-Lipschitz (of order
2) if there exists a constant L > 0 such that for any u,v ∈ R2,

|ψ (u)− ψ (v)| ≤ L (1 + ‖u‖2 + ‖v‖2) ‖u− v‖2 .

For pseudo-Lipschitz ψ and u,v ∈ Rn, we denote 1
n

∑n
i=1 ψ (ui, vi) by ψav (u,v).

1.2 Main result

We assume the following setting:

• x0 = x0 (n) is from the sequence {x0 (n)}n∈N such that W10 (µxn, pX0)→ 0 as n→∞, where
µxn denotes the empirical measure of x0 (n) and pX0 denotes the law of a random variable X0
with E

[
X2

0
]
≡ M2 and E

[
X10

0
]
≡ M10 <∞.

• w = w (n) is from the sequence {w (n)}n∈N such that W4 (µwn , pW ) → 0 as n → ∞, where
µwn denotes the empirical measure of w (n) and pW denotes the law of a random variable W
with E

[
W 2] ≡ σ2 > 0 and E

[
W 4] <∞.

• Ā = Ā (n) ∈ Rm×n for m = m (n) that satisfies m/n→ δ > 0, and entries of A (n) are drawn
i.i.d.

Further, we call M ∈ Rm×n a matrix of standard type if Mij ’s are i.i.d., E [Mij ] = 0, E
[
M2
ij

]
= 1,

and E
[
|Mij |p

]
<∞ for some p > 4. Note that we allow the distribution of Mij to be dependent on

n. We shall consider Ā such that
√
mĀ is of standard type. We reserve the notation Ḡ for matrix

Ā with Gaussian entries such that
√
mḠ is of standard type.

We also note that by [Vil03, Theorem 7.12], µxn and µwn converge weakly to X0 and W respec-
tively, with 1

n ‖x0 (n)‖22 → M2, 1
n ‖x0 (n)‖10

10 → M10, 1
m ‖w (n)‖22 → σ2 and 1

m ‖w (n)‖44 converges
to a finite constant as n→∞.

Let x̂
(
Ā
)

be the minimizer of the elastic net (1). Uniqueness of x̂
(
Ā
)

follows from that
the objective function of (1) is strictly convex, for ρ > 0. We measure the estimation error of
x̂
(
Ā
)

by ψav
(
x̂
(
Ā
)
,x0

)
, where ψ is an arbitrary pseudo-Lipshitz function. Describing the

limit requires some definitions. We denote by η : R × R+ → R the soft-thresholding function,
η (x; a) = sign(x) max(|x| − a, 0). For some λ, ρ > 0, let τ∗, γ, α be the solutions to the system of
equations

τ2
∗ = σ2 + 1

δ
E
[( 1

γ + 1η (X0 + τ∗Z;ατ∗)−X0

)2
]
, (2)

λ = ατ∗

(
1− 1

δ (γ + 1)P (|X0 + τ∗Z| ≥ ατ∗)
)
, (3)

ρ = λγ

ατ∗
, (4)

in which Z ∼ N (0, 1) independent of X0. The solutions can be proven to exist and be unique (see
Section 5.11). Define

ψ∗ = E
[
ψ

( 1
γ + 1η (X0 + τ∗Z;ατ∗) , X0

)]
. (5)

We are now ready to state our main result.
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Theorem 1. In the above setting, let Ā denote a sequence of matrices of standard type. Then,
for any ψ pseudo-Lipschitz, ψav

(
x̂
(
Ā
)
,x0

)
converges to ψ∗ in probability as n → ∞, where

ψ∗ = ψ∗ (λ, ρ, σ, δ, pX0) is defined as per Eq. (5).

As a prototypical example, by specializing ψ (x, y) to (x− y)2 and |x− y|, we obtain from Theo-
rem 1 the asymptotic formulas for the squared error 1

n

∥∥∥x̂ (Ā
)
− x0

∥∥∥2

2
and the `1 error 1

n

∥∥∥x̂ (Ā
)
− x0

∥∥∥
1
.

In particular, as n→∞,
1
n

∥∥∥x̂ (Ā
)
− x0

∥∥∥2

2
→ δ

(
τ2
∗ − σ2

)
(6)

in probability, by Eq. (2) and (5).
Our proof analyzes a perturbation of (1), called the s-elastic net:

OPT
(
s, Ā

)
≡ min

x∈B

1
n
C
(
x; s, Ā

)
, (7)

in which
C
(
x; s, Ā

)
= 1

2

∥∥∥Ā (x− x0)−w
∥∥∥2

2
+ λ ‖x‖1 + ρ

2 ‖x‖
2
2 + snψav (x,x0) ,

B is an appropriately chosen compact set (which, in particular, follows Eq. (19)), and s ∈ R.
Observe that x̂

(
Ā
)

= argminx∈Rn C
(
x; 0, Ā

)
. We also let x̂s

(
Ā
)
be a minimizer of the s-elastic

net. The definition (7) is motivated by the following identity:

ψav
(
x̂
(
Ā
)
,x0

)
= d

dsOPT
(
0, Ā

)
. (8)

This relation suggests that one can study universality of ψ
(
x̂
(
Ā
)
,x0

)
via universality of the cost

OPT
(
s, Ā

)
for s in a neighborhood of 0. Here we appeal to the Lindeberg’s principle, following

[KM11]. One main technical challenge is that universality of OPT
(
s, Ā

)
holds in the limit n→∞

for each fixed s, whereas the identity involves taking derivative w.r.t. s, i.e. s → 0. We overcome
this problem by establishing a quantitative form of Eq. (8), cf. Lemma 11. Another challenge is
that, in order to apply the Lindeberg method to OPT

(
s, Ā

)
, we need B to be carefully chosen,

and show that this restriction does not affect the optimizer. In particular, we establish a priori a
bound on

∥∥∥x̂ (Ā
)∥∥∥

p
for some large p > 2, cf. Lemma 9 and Eq. (19).

We note that the cases λ = 0, σ = 0 or δ = 0 can be treated by a continuity argument. Also, the
assumptions on E

[
X10

0
]
and E

[
W 4] are mainly introduced to simplify proofs. They can be relaxed

to boundedness of E [Xp
0 ] and E [W q] for some p, q > 2, by applying the truncation technique, which

we use on Ā in the proof (cf. Section 2), on x0 and w. In doing so, we obtain a better convergence
rate of roughly O

(
n−0.5), instead of O

(
n−0.188) as to be seen in the proof of Proposition 13. We

omit the details for clarity of presentation. On the other hand, ρ > 0 is required for our proof
technique to hold, and ρ = 0 (i.e. the LASSO) requires non-trivial extension.

1.3 Numerical illustration

In Fig. 1, we compare the mean-squared error (MSE) results of numerical simulations for various
distributions of the entries of Ā, as well as the asymptotic prediction from Eq. (6), for different
parameter configurations. In the figures, “Gaussian” refers to Āij ∼ N

(
0, 1

m

)
, “Bernoulli” refers
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Figure 1: Simulated MSE for different distributions. For both figures, we use n = 1000, m = 640,
and λ = 0.1, with the simulations being averaged over 100 instances. In Figure (a), P (X0 = 1) =
P (X0 = −1) = 0.05, P (X0 = 0) = 0.9, and σ2 = 10−4. In Figure (b), P (X0 = 1) = P (X0 = −1) =
0.2, P (X0 = 0) = 0.6, and σ2 = 0.2.

to Āij ∼ Unif
(
± 1√

m

)
, and “Fourier” refers to Ā whose m (distinct) rows are drawn at random

from the n rows of the n× n discrete cosine transform matrix.
Note that the “Fourier” case does not follow the i.i.d. entry assumption. Interestingly its

elastic net MSE does not conform with the asymptotic prediction, unlike its `1−`0 phase transition
reported in [DT09].

Also, in Fig. 1(b), as the elastic net parameter ρ is varied, we notice a pronounced minimum
for some ρ > 0. In other words, it is possible that the elastic net substantially outperforms the
LASSO. This is not unexpected when the non-zero coefficients are all roughly of the same size.

1.4 Related literature

This paper continues the line of work in [KM11, BM11, BM12]. In particular, [BM12] characterizes
the asymptotic estimation error of the LASSO for Gaussian sensing matrices. The proof is based
on the analysis of the approximate message passing (AMP) algorithm [BM11], which is proved
to converge to the LASSO minimizer. An alternative approach based on Gordon’s Gaussian min-
max theorem was developed in [Sto13, OTH13, TOH15, TPH15, TAH16] and applied to several
generalizations of the LASSO to structured inverse problems.

All these works are specific to the Gaussian case, and it is not immediate to export these proof
techniques to non-Gaussian sensing matrices. Against this background, [KM11] used the Lindeberg
method to prove universality of the value of the LASSO optimization problem, OPT

(
s = 0, Ā

)
for

B = {x ∈ Rn : ‖x‖∞ ≤ C} a box and ρ = 0, for some constant C, cf. Eq. (7). However, the
value of OPT

(
s = 0, Ā

)
does not have direct implications on other performance metrics. In this
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paper we show that a connection can instead be established by considering s 6= 0 in a neighborhood
of 0. A different approach was developed in [BLM+15] which proved universality for the AMP
algorithm, and showed that this implies universality of the `1 − `0 phase transition (for noiseless
measurements), under certain conditions on the entries distributions (which –in particular– were
required to have a density). This confirmed a conjecture put forward in [DT09] on the basis of
extensive numerical simulations. The recent paper by Oymak and Tropp [OT15] applied again
the Lindeberg method, supplemented by several geometric insights, and proved universality of the
`1− `0 phase transition under substantially weaker conditions, as well as for a broader set of linear
inverse problems. The same paper also considers the case of non-vanishing noise but only proves
universality of the noise stability coefficient.

From a technical perspective, our work builds directly on [KM11], and the scope of the ideas
first introduced there.

We note that a large body of literature on the LASSO and elastic net in statistics and compressed
sensing places an emphasis on sparsity or near-sparsity structure of x0, with the aim of its near-
exact recovery. See, e.g. [HTW15]. In contrast, our result disregards such assumption and aids
understanding of the elastic net method in a broader setting.

As a remark, we note that the elastic net penalization (i.e. the term λ ‖x‖1 + ρ
2 ‖x‖

2
2 in the

objective function), with ρ > 0, is exploited in one crucial aspect: it is strongly convex. While
our work concerns explicitly with the elastic net problem, it is foreseeable that universality can be
proven to hold for other variants with strongly convex objective functions, using the outlined proof
strategy. This includes the LASSO with δ > 12.

1.5 Outline

The rest of the paper is dedicated to proving Theorem 1. The proof requires truncation of entries of
Ā. In Section 2, we describe the truncation, state an analogue of Theorem 1 for the truncation (in
particular, Proposition 2), and prove Proposition 2 as well as Theorem 1. The proof of Proposition
2 comprises of several key intermediate results. Some of those results, which concern with the
technicalities required to establish universality as discussed in Section 1.2, are proven in Section 3.
The others concern with convergence results in the Gaussian case, which is treated in Section 4,
where we appeal to the mechanism of the AMP. Proofs of auxiliary lemmas are deferred to Section
5.

2 Proof of Theorem 1

2.1 Truncation of Entries of Ā

We define the (centered and normalized) truncation of the matrices. For some sufficiently large
R > 0, let A,G ∈ Rm×n be such that

Aij = Ãij√
mE

[
Ã2
ij

] , Gij = G̃ij√
mE

[
G̃2
ij

] (9)

2In the case of the LASSO with δ > 1, strong convexity holds with high probability thanks to Theorem 26. In
fact, the proof that universality holds for this case is an easy modification of the presented proof for the elastic net.
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in which

Ãij = ĀijI
(√

m
∣∣∣Āij∣∣∣ ≤ R

)
− E

[
ĀijI

(√
m
∣∣∣Āij∣∣∣ ≤ R

)]
(10)

G̃ij = ḠijI
(√

m
∣∣∣Ḡij∣∣∣ ≤ R

)
− E

[
ḠijI

(√
m
∣∣∣Ḡij∣∣∣ ≤ R

)]
(11)

It is immediate that E [Aij ] = E [Gij ] = 0 and E
[
A2
ij

]
= E

[
G2
ij

]
= 1√

m
. We have a universality

result for the truncation.

Proposition 2. Assume the setting in Theorem 1. For ψ pseudo-Lipschitz, ψav (x̂ (A) ,x0) con-
verges to ψ∗ in probability as n→∞ then R→∞, where ψ∗ is the constant given in Eq. (5).

In the following, we show that Theorem 1 follows from this result. The next three auxiliary
lemmas, concerning with properties of pseudo-Lipschitz functions, of the truncation on Ā, and
geometry of the elastic net minimizer, shall be used repeatedly throughout our proofs. Their
proofs are deferred to Section 5.

Lemma 3. For ψ pseudo-Lipschitz and u,v, r, t ∈ Rn,

|ψav (u,v)− ψav (r, t)| ≤ L
√

5‖u− r‖2 + ‖v − t‖2√
n

√
1 + ‖u‖

2
2

n
+ ‖v‖

2
2

n
+ ‖r‖

2
2

n
+ ‖t‖

2
2

n
(12)

Lemma 4. Some properties of the truncation A:

• There exists R0 > 0 such that for all R ≥ R0,
√
m |Aij | ≤ 3R with probability 1.

•
∥∥∥A− Ā

∥∥∥
2
→ 0 in probability as n→∞ then R→∞.

• ‖A‖2 converges in probability to 1 + 1√
δ
as n→∞.

Lemma 5. With high probability,
∥∥∥x̂ (Ā

)∥∥∥2

2
< nT <∞ for some T = T (λ, ρ, σ, δ, pX0). Similarly,

‖x̂ (A)‖22 < nT with high probability. In particular, we choose T ≥ 100M2 so that ‖x0‖22 ≤ nT for
sufficiently large n.

These lemmas imply the following.

Lemma 6.
∣∣∣ψav (x̂ (A) ,x0)− ψav

(
x̂
(
Ā
)
,x0

)∣∣∣→ 0 in probability as n→∞ then R→∞.

Proof. Let x̄ = x̂
(
Ā
)
and x̂ = x̂ (A) for brevity. We first claim that 1

n ‖x̄− x̂‖22 → 0 in probability
as n→∞ then R→∞. Then the thesis follows easily in light of Lemma 3, the facts that 1

n ‖x̂‖
2
2

and 1
n ‖x̄‖

2
2 are bounded with high probability by Lemma 5, and that 1

n ‖x0‖22 is bounded eventually.
To show the claim, by the KKT condition, we have

Ā
T

Ā (x̄− x0)− Ā
T

w + λu + ρx̄ = 0 (13)
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for some u ∈ ∂ ‖x̄‖1. As such, we get

0 ≤ C (x̄; 0,A)− C (x̂; 0,A) (14)

= 1
2 [A (x̄ + x̂− 2x0)− 2w]T A (x̄− x̂) + λ (‖x̄‖1 − ‖x̂‖1) + ρ

2
(
‖x̄‖22 − ‖x̂‖

2
2

)
(15)

= −1
2 ‖A (x̄− x̂)‖22 +

[(
ATA− Ā

T
Ā
)

(x̄− x0)−
(
A− Ā

)T
w

]T
(x̄− x̂)

+ λ
[
‖x̄‖1 − ‖x̂‖1 − uT (x̄− x̂)

]
− ρ

2 ‖x̄− x̂‖22 (16)
(a)
≤
(∥∥∥A + Ā

∥∥∥
2

∥∥∥A− Ā
∥∥∥

2
‖x̄− x0‖2 +

∥∥∥A− Ā
∥∥∥

2
‖w‖2

)
‖x̄− x̂‖2 −

ρ

2 ‖x̄− x̂‖22 (17)

which yields, for ρ > 0,

‖x̄− x̂‖2
(b)
≤ 2
ρ

[(
‖A‖2 +

∥∥∥Ā∥∥∥
2

)
(‖x̄‖2 + ‖x0‖2) + ‖w‖2

] ∥∥∥A− Ā
∥∥∥

2
(18)

where (a) follows from convexity of ‖·‖1 and the Cauchy-Schwarz inequality, and (b) is by the
triangular inequality. The proof is complete with the second property in Lemma 4, along with the
facts that 1

n ‖x̄‖
2
2,

1
n ‖x̂‖

2
2, ‖A‖2 and

∥∥∥Ā∥∥∥
2
are bounded with high probability by Lemma 5, the third

property in Lemma 4 and Theorem 26, and that 1
n ‖x0‖22 and 1

n ‖w‖
2
2 are bounded eventually.

Proof of Theorem 1. This is immediate from Lemma 6 and Proposition 2.

The rest of the section focuses on the proof of Proposition 2.

2.2 Proof of Proposition 2

Recall the definition of G, the truncation of Ḡ. We state some intermediate results. The next two
lemmas concern with convergence results of x̂ (G) and OPT (0,G). Their proofs are deferred to
Section 4.

Lemma 7. For ψ pseudo-Lipschitz, ψav (x̂ (G) ,x0) converges to ψ∗ in probability as n→∞ then
R→∞.

Lemma 8. OPT (0,G), defined with B given in Eq. (19) below, converges to L∗ in probability as
n→∞ then R→∞, where L∗ = L∗ (λ, ρ, σ, δ, pX0) is a (non-random) constant.

The next lemma describes another geometric property of x̂ (A), in addition to Lemma 5. This
property is crucial to establishing universality of OPT (s,A).

Lemma 9. With high probability, ‖x̂ (A)‖∞ = O
(
n0.104).

By the above lemma and Lemma 5, with high probability, x̂ (A) = argminx∈B C (x; 0,A) for

B =
{

x ∈ Rn : ‖x‖22 ≤ nT, ‖x‖∞ ≤ g (n)
}
, (19)

for some g (n) = O
(
n0.104), and a constant T defined as per Lemma 5. We then define the s-

elastic net (7) using this B. As a companion note to the remark at the end of Section 1.2, in the
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situation that ‖x0‖∞ ≤ c for some constant c, one can obtain that ‖x̂ (A)‖∞ = O
(√

logn
)
with

high probability, a bound that is better than the one presented here. This situation arises as a
consequence of applying the truncation technique to x0.

For k > 0, one can easily find functions h−k and h+
k mapping from R to [0, 1], thrice continuously

differentiable and non-increasing, such that h−k (x) ≤ I (x ≤ 0) ≤ h+
k (x) and h+

k (x) → I (x ≤ 0),
h−k (x) → I (x < 0) as k → ∞, for any x ∈ R. In particular, we consider h−k such that h−k (x) = 1
for x ≤ − 1

k and h−k (x) = 0 for x ≥ 0, and h+
k (x) = h−k

(
x− |s|k

)
. Note that h−k and h+

k depend on
s, but we do not make this explicit for economy of notations. This dependency is immaterial for
most parts, except for the proof of Proposition 2 below.

The following proposition establishes universality of OPT (s,A), where Lemma 9 is crucially
made use of.

Proposition 10. For any s and any ` ∈ R, as n→∞,∣∣∣E [h−k (OPT (s,A)− `)
]
− E

[
h−k (OPT (s,G)− `)

]∣∣∣→ 0 . (20)

The following lemma, establishing an analogue of the identity (8), bridges universality of
OPT (s,A) to that of ψav (x̂ (A) ,x0).

Lemma 11. Let ∆ (s,A) = OPT (s,A) − OPT (0,A). There exists ε (s) > 0 such that ε (s) is
independent of R, ε (s) ↓ 0 as s→ 0 and

lim
n→∞

P
(∣∣∣∣ψav (x̂ (A) ,x0)− ∆ (s,A)

s

∣∣∣∣ ≤ ε (s)
)

= 1 . (21)

The proofs of Lemma 9, Proposition 10 and Lemma 11 can be found in Section 3. We are now
ready for the proof of Proposition 2.

Proof of Proposition 2. By Lemma 11 and Proposition 8, there exists ε (s) > 0 independent of R
such that ε (s) ↓ 0 as s→ 0 and

lim
R→∞

lim
n→∞

P
(∣∣∣∣OPT (s,G)

s
− L

∗ + sψ∗

s

∣∣∣∣ ≤ ε (s)
)

= 1 . (22)

Next, consider s > 0. By Proposition 10, for any ` ∈ R,

P (OPT (s,A) ≤ `) ≤ E
[
h+
k (OPT (s,A)− `)

]
(23)

= E
[
h−k

(
OPT (s,A)− `− s

k

)]
(24)

≤ E
[
h−k

(
OPT (s,G)− `− s

k

)]
+ on (1) (25)

≤ P
(

OPT (s,G) ≤ `+ s

k

)
+ on (1) , (26)

where on (1)→ 0 as n→∞. Similarly,

P (OPT (s,A) ≤ `) ≥ P
(

OPT (s,G) ≤ `− s

k

)
− on (1) , (27)
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which implies

P
(∣∣∣∣OPT (s,A)

s
− `

s

∣∣∣∣ ≤ 2ε (s)
)
≥ P

(∣∣∣∣OPT (s,G)
s

− `

s

∣∣∣∣ ≤ 2ε (s)− 1
k

)
− on (1) . (28)

Taking k = 1
ε(s) and ` = L∗ + sψ∗, we obtain

lim
R→∞

lim
n→∞

P
(∣∣∣∣OPT (s,A)

s
− L

∗ + sψ∗

s

∣∣∣∣ ≤ 2ε (s)
)

= 1 . (29)

Similarly we have OPT (0,A) converges to L∗ in probability as n→∞ then R→∞, using Lemma
8. Then applying Lemma 11 completes the proof.

3 Proof of Lemmas 9, 11, and Proposition 10

3.1 Proof of Lemma 11

For brevity, we drop A from the notations x̂ (A) and x̂s (A). The KKT condition yields

ATA (x̂− x0)−ATw + λu + ρx̂ = 0 (30)

for some u ∈ ∂ ‖x̂‖1. Since x̂ ∈ B with high probability by Lemmas 5 and 9, we then have for any
s,

0 ≤ C (x̂; s,A)− C (x̂s; s,A) (31)

= 1
2 [A (x̂ + x̂s − 2x0)− 2w]T A (x̂− x̂s) + λ (‖x̂‖1 − ‖x̂s‖1)

+ ρ

2
(
‖x̂‖22 − ‖x̂s‖

2
2

)
+ sn (ψav (x̂,x0)− ψav (x̂s,x0)) (32)

= −1
2 ‖A (x̂− x̂s)‖22 −

ρ

2 ‖x̂− x̂s‖22 + λ
[
‖x̂‖1 − ‖x̂s‖1 − uT (x̂− x̂s)

]
+ sn (ψav (x̂,x0)− ψav (x̂s,x0)) (33)

(a)
≤ −ρ2 ‖x̂− x̂s‖22 + |s|n |ψav (x̂,x0)− ψav (x̂s,x0)| (34)
(b)
≤ −ρ2 ‖x̂− x̂s‖22 + |s| c

√
n ‖x̂− x̂s‖2 (35)

where we use convexity of ‖·‖1 in (a), and (b) is by Lemma 3 and that x̂s ∈ B, with c =
L
√

5 (1 + 2T + 2M2 + 0.1) for sufficiently large n. We thus have

1√
n
‖x̂− x̂s‖2 ≤

2c
ρ
|s| . (36)

Next observe that
OPT (0,A) + sψav (x̂,x0) ≥ OPT (s,A) (37)

and therefore, for s > 0,
−∆ (−s)

s
≥ ψav (x̂,x0) ≥ ∆ (s)

s
. (38)

10



On the other hand,

−∆ (−s)−∆ (s)
s

≤ 1
ns

(C (x̂s; 0) + C (x̂−s; 0)− C (x̂s; s)− C (x̂−s;−s)) (39)

= ψav (x̂−s,x0)− ψav (x̂s,x0) (40)

≤ c√
n
‖x̂−s − x̂s‖2 (41)

≤ c√
n

(‖x̂− x̂s‖2 + ‖x̂− x̂−s‖2) (42)

where we use Lemma 3, x̂s, x̂−s ∈ B, and 1
n ‖x0‖22 is bounded eventually. Using Eq. (36) completes

the proof.

3.2 Proof of Lemma 9

We state an auxiliary lemma.

Lemma 12. Fix S ⊂ [n] such that |S| ≤ εn for some ε ∈ (0, 1). Suppose z ∈ Rm is a (deterministic)
function of AS̄, such that ‖z‖2 ≤

√
m. Then:

P
(∥∥∥AT

Sz
∥∥∥2

2
≥ nε+ 4c

√
2nεt+ 4ct

)
≤ e−t

for some constant c > 0 independent of S and ε.

Proof. Since AS̄ is independent of AS , we can prove the claim for a fixed vector z. This follows
from standard concentration arguments for sub-Gaussian random linear transformations, using
Bernstein’s inequality (see cf. [BLM13]). This is applicable since A has bounded entries by Lemma
4. The details are omitted.

Proof of Lemma 9. Let x̂ = x̂ (A) for brevity. The strategy is to examine ‖x̂S‖∞ for each subset S
of [n]. If we can bound ‖x̂S‖∞ for all subsets S, we obtain a bound on ‖x̂‖∞. To bound ‖x̂S‖∞, one
can instead bound ‖x̂S‖2. Here the idea is to consider a perturbation of the elastic net, which itself
is an elastic net problem, in which the optimization domain is restricted to {x ∈ Rn : xS = 0}.
The details are as follows.

For some ε ∈ (0, 1), consider a partition P of [n] into 1
ε subsets S, each of which has size

nε. Here we assume without loss of generality that 1
ε and nε are integers. Let G be the event

‖A‖2 ≤ 100
(
1 + 1√

δ

)
, and ES be the event ‖x̂S‖∞ > c

√
nε0.4 for some constant c independent of

S and ε, to be chosen later. We bound P (ES ∩ G). Let u = argminx∈Rn, xS=0 CS̄ (x) in which

CS̄ (x) = 1
2

∥∥∥AS̄

(
xS̄ − x0,S̄

)
−w

∥∥∥2

2
+ λ ‖xS̄‖1 + ρ

2 ‖xS̄‖
2
2 . (43)

Then uS = 0, and uS̄ is a function of AS̄ . By the KKT condition, for some v ∈ ∂ ‖uS̄‖1,

AT
S̄

(
AS̄uS̄ −AS̄x0,S̄ −w

)
+ λv + ρuS̄ = 0 . (44)
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Therefore, similar to the proof of Lemma 5,

‖u‖2 = ‖uS̄‖2 (45)

=
∥∥∥∥[AT

S̄
AS̄ + ρI

]−1 (
−λv + AT

S̄
AS̄x0,S̄ + AT

S̄
w
)∥∥∥∥

2
(46)

(a)
≤ 1
ρ

(
λ ‖v‖2 + ‖AS̄‖

2
2

∥∥∥x0,S̄

∥∥∥
2

+ ‖AS̄‖2 ‖w‖2
)

(47)

(b)
≤ 1
ρ

(
λ
√
n+ ‖A‖22 ‖x0‖2 + ‖A‖2 ‖w‖2

)
(48)

where (a) is due to the Cauchy-Schwarz inequality and the triangular inequality, and (b) is because
|vi| ≤ 1 for all i ∈ [n]. Since ‖A‖2 ≤ 100

(
1 + 1√

δ

)
under G, 1

n ‖x0‖22 and 1
n ‖w‖

2
2 are bounded

eventually, we obtain that the event G implies ‖u‖22 ≤ nT̃ for some constant T̃ independent of S
and ε.

Next we have:

0 ≤ C (u; 0,A)− C (x̂; 0,A) (49)
(a)= λ

[
‖uS̄‖1 − ‖x̂S̄‖1 − vT (uS̄ − x̂S̄)

]
− λ ‖x̂S‖1 −

1
2 ‖AS̄uS̄ −Ax̂‖22

− x̂TSAT
S

(
AS̄uS̄ −AS̄x0,S̄ −w

)
− xT0,SAT

S (AS̄uS̄ −Ax̂)− ρ

2
(
‖uS̄ − x̂S̄‖

2
2 + ‖x̂S‖22

)
(50)

(b)
≤ ‖x̂S‖2

∥∥∥AT
S

(
AS̄uS̄ −AS̄x0,S̄ −w

)∥∥∥
2

+ ‖A‖2 ‖x0,S‖2 ‖AS̄uS̄ −Ax̂‖2

− 1
2 ‖AS̄uS̄ −Ax̂‖22 −

ρ

2 ‖x̂S‖
2
2 (51)

where in (a), we use Eq. (44), and in (b), we use convexity of ‖·‖1. Firstly, note that

‖x0,S‖2 ≤ |S|
0.4 ‖x0,S‖10 ≤ |S|

0.4 ‖x0‖10 ≤
(
M0.1

10 + 0.1
)√

nε0.4 (52)

for sufficiently large n. Secondly, since G implies ‖u‖22 ≤ nT̃, it also implies∥∥∥AS̄uS̄ −AS̄x0,S̄ −w
∥∥∥

2
≤ ‖A‖2 (‖u‖2 + ‖x0‖2) + ‖w‖2 ≤ c1

√
n (53)

for some constant c1 independent of S and ε. By Lemma 12, there exists a constant c2 > 0,
independent of S and ε, such that for

ẼS =
{∥∥∥AT

S

(
AS̄uS̄ −AS̄x0,S̄ −w

)∥∥∥2

2
> c2nε

}
,

we have

P
(
ẼS ∩ G

)
≤ P

(
ẼS ∩

{∥∥∥AS̄uS̄ −AS̄x0,S̄ −w
∥∥∥

2
≤ c1
√
n
})

(54)

≤ e−nε . (55)
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Then using Eq. (51) and (52), we have that the event Ẽ{S ∩ G implies

1
4

(
‖x̂S‖2 + 1

√
ρ
‖AS̄uS̄ −Ax̂‖2

)2

≤ 1
2 ‖x̂S‖

2
2 + 1

2ρ ‖AS̄uS̄ −Ax̂‖22 (56)

≤ ‖x̂S‖2
√
c2
ρ2nε+ 1

√
ρ
‖AS̄uS̄ −Ax̂‖2 c3

√
nε0.4 (57)

≤ c

4
√
nε0.4

(
‖x̂S‖2 + 1

√
ρ
‖AS̄uS̄ −Ax̂‖2

)
(58)

for some c3 > 0 independent of S and ε, and c = 4 max
{√

c2
ρ , c3

}
. This implies ‖x̂S‖∞ ≤ ‖x̂S‖2 ≤

c
√
nε0.4. Note that c is independent of S and ε, since c1, c2 and c3 are independent of S and ε.

Therefore P (ES ∩ G) ≤ e−nε.
Finally, by the union bound,

P
(
‖x̂‖∞ > c

√
nε0.4

)
= P

( ⋃
S∈P
ES

)
≤ P

(
G{
)

+
∑
S∈P

P (ES ∩ G) (59)

≤ P
(
G{
)

+ 1
ε
e−nε . (60)

By the third property in Lemma 4, P
(
G{
)
→ 0 as n→∞. Choosing ε = O

(
n−0.99) completes the

proof.

3.3 Proof of Proposition 10

For some ε > 0, consider a minimal ε
√
n-net Xε ⊂ B in which for any x ∈ B, there exists u ∈ Xε such

that ‖u− x‖22 ≤ nε2. Without loss of generality, assume that x0 ∈ Xε, which is valid since T > M2

as per Lemma 5. Since B ⊂
{

x ∈ Rn : ‖x‖22 ≤ nT
}
, a standard argument from the epsilon-net

method yields |Xε| ≤
(
1 + 2

√
T
ε

)n
. Let us define

OPTε (s,A) = min
x∈Xε

1
n
C (x; s,A) . (61)

We have the following universality result.

Proposition 13. For any ` ∈ R,

lim
n→∞

∣∣∣E [h−k (OPTε (s,A)− `)
]
− E

[
h−k (OPTε (s,G)− `)

]∣∣∣ = 0 (62)

Proof. We use the Lindeberg’s method (see e.g. [Cha06, KM11]). Some of our steps are similar to
[KM11, Proof of Theorems 3 and 5]; we present here the full proof for completeness. For β > 0,
define the soft-max function

f (ε, β,A) = − 1
nβ

log
∑

x∈Xε
e−βC(x;s,A) . (63)

It is easy to see that

lim
β→∞

f (ε, β,A) = min
x∈Xε

1
n
C (x; s,A) = OPTε (s,A) . (64)
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Then since h−k is monotone and continuous, we have

lim
β→∞

h−k (f (ε, β,A)− `) = h−k (OPTε (s,A)− `) (65)

for any ` ∈ R. A standard argument on the derivative of the soft-max function (e.g. as in [KM11,
Eq. (17)]) gives

0 ≤ ∂

∂β
f (ε, β,A) ≤ 1

nβ2 log |Xε| ≤
1
β2 log

(
1 + 2

√
T
ε

)
. (66)

Therefore, for any β > 0,

lim
n→∞

∣∣∣E [h−k (OPTε (s,A)− `)
]
− E

[
h−k (OPTε (s,G)− `)

]∣∣∣
≤ lim

n→∞

∣∣∣E [h−k (f (ε, β,A)− `)
]
− E

[
h−k (f (ε, β,G)− `)

]∣∣∣+ c

ˆ ∞
β

1
t2

log
(

1 + 2
√

T
ε

)
dt (67)

= lim
n→∞

∣∣∣E [h−k (f (ε, β,A)− `)
]
− E

[
h−k (f (ε, β,G)− `)

]∣∣∣+ c

β
log

(
1 + 2

√
T
ε

)
(68)

for some c = c (k, s) since
∣∣∣ ddxh−k (x)

∣∣∣ is bounded for any x ∈ R. The proof is complete by showing
that

lim
n→∞

∣∣∣E [h−k (f (ε, β,A)− `)
]
− E

[
h−k (f (ε, β,G)− `)

]∣∣∣ = 0 . (69)

and subsequently letting β →∞.
In the following, let f (A) = f (ε, β,A), h (A) = h−k (f (ε, β,A)− `), and C (A) = C (x; s,A)

for brevity. Let D = D (q, p, v) ∈ Rm×n be such that its (i, j)-th entry is

Dij =


Aij , i < q or (i = q and j < p) ,
v, i = q and j = p,

Gij , otherwise.
(70)

We only consider |v| ≤ 3R√
m
. Let z = x0−x, and Qi (x,D) = wi+

∑n
j=1Dijzj . Define the operators

〈·〉 and 〈·〉∼q as introduced in [KM11, Section IV.B]

〈·〉 =
∑

x∈Xε ·e
−βC(x;s,D)∑

x′∈Xε e
−βC(x′;s,D) , (71)

〈·〉∼q =
∑

x∈Xε ·e
−β[C(x;s,D)−Q2

q(x,D)/2]∑
x′∈Xε e

−β[C(x′;s,D)−Q2
q(x′,D)/2] . (72)

We also use ∂, ∂2 and ∂3 to denote ∂
∂v ,

∂2

∂v2 and ∂3

∂v3 respectively. We note that for x ∈ Xε, recalling
Xε ⊂ B and B is defined as per Eq. (19),

‖z‖∞ ≤ ‖x‖∞ + ‖x0‖∞ ≤ ‖x‖∞ + ‖x0‖10 = O
(
n0.104

)
, (73)

‖z‖2 ≤ ‖x‖2 + ‖x0‖2 ≤
√
n (T + M2) = O

(√
n
)
. (74)
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We consider E
[〈
Q4
q (x,D)

〉]
:

n∑
p=1

m∑
q=1

E
[〈
Q4
q (x,D)

〉]
=

n∑
p=1

m∑
q=1

E


〈
Q4
q (x,D) e−Q2

q(x,D)/2
〉
∼q〈

e−Q
2
q(x,D)/2

〉
∼q

 (75)

(a)
≤

n∑
p=1

m∑
q=1

E
[〈
Q4
q (x,D)

〉
∼q

]
(76)

≤ 27
n∑
p=1

m∑
q=1

E

w4
q +

〈
v4z4

p +

 ∑
i∈[n]\{p}

Dqizi

4〉
∼q

 (77)

≤ 27

n ‖w‖44 + nmv4 ‖z‖4∞ +
n∑
p=1

m∑
q=1

E

〈
 ∑
i∈[n]\{p}

Dqizi

4〉
∼q


 (78)

(b)= 27

n ‖w‖44 + nmv4 ‖z‖4∞ +
n∑
p=1

m∑
q=1

∑
i1,i2∈[n]\{p}

E
[
D2
qi1D

2
qi2

]
E
[〈
z2
i1z

2
i2

〉
∼q
] (79)

(c)
≤ 27

n ‖w‖44 + 34R4

δ
‖z‖4∞ + 34R4

m2

n∑
p=1

m∑
q=1

∑
i1,i2∈[n]\{p}

E
[〈
z2
i1z

2
i2

〉
∼q
] (80)

≤ 27

n ‖w‖44 + 34R4

δ
‖z‖4∞ + 34R4

m2

n∑
p=1

m∑
q=1

E
[〈
‖z‖42

〉
∼q
] (81)

(d)= O
(
n2
)

(82)

where (a) is because Q4
q (x,D) and e−Q2

q(x,D)/2 are negatively correlated, (b) is because E [Dij ] = 0,
(c) is because |Dij | ≤ 3R√

m
by Lemma 4 and |v| ≤ 3R√

m
, and (d) is because ‖z‖2 = O (

√
n) and

1
m ‖w‖

4
4 is bounded eventually. We thus have:

n∑
p=1

m∑
q=1

E
[〈
|∂C (D)|3

〉]
=

n∑
p=1

m∑
q=1

E
[〈
|zp|3 |Qq (x,D)|3

〉]
(83)

≤
n∑
p=1

m∑
q=1

E
[〈
‖z‖3∞ |Qq (x,D)|3

〉]
(84)

= O
(
n0.312

) n∑
p=1

m∑
q=1

E
[〈
|Qq (x,D)|3

〉]
(85)

(a)
≤ O

(
n0.312

) n∑
p=1

m∑
q=1

(
E
[〈
|Qq (x,D)|4

〉])3/4
(86)

(b)
≤ O

(
n0.812

) n∑
p=1

m∑
q=1

E
[〈
|Qq (x,D)|4

〉]3/4

(87)

= O
(
n2.312

)
(88)
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where (a) is by Jensen’s inequality, and (b) is by Holder’s inequality. Similarly, one can also obtain

n∑
p=1

m∑
q=1

E [〈|∂C (D)|〉] = O
(
n2.104

)
, (89)

n∑
p=1

m∑
q=1

E
[〈
|∂C (D)|2

〉]
= O

(
n2.208

)
. (90)

Furthermore, we have ∣∣∣∂2C (D)
∣∣∣ = z2

p = O
(
n0.208

)
. (91)

Note that

E
[
(〈|∂C (D)|〉)3

]
≤ E

[〈
|∂C (D)|3

〉]
(92)

E
[
(〈|∂C (D)|〉)2

]
≤ E

[〈
|∂C (D)|2

〉]
(93)

E
[
〈|∂C (D)|〉

〈
|∂C (D)|2

〉]
≤
(
E
[
(〈|∂C (D)|〉)3

])1/3
(
E
[(〈
|∂C (D)|2

〉)3/2
])2/3

(94)

≤ E
[〈
|∂C (D)|3

〉]
(95)

by Jensen’s inequality and Holder’s inequality. Direct calculations then yield
n∑
p=1

m∑
q=1

E [|∂f (D)|] = O
(
n1.104

)
, (96)

n∑
p=1

m∑
q=1

E
[∣∣∣∂2f (D)

∣∣∣] = O
(
n1.208

)
, (97)

n∑
p=1

m∑
q=1

E
[∣∣∣∂3f (D)

∣∣∣] = O
(
n1.312

)
. (98)

Since h−k is thrice continuously differentiable,

n∑
p=1

m∑
q=1

E
[∣∣∣∂3h (D)

∣∣∣] = O
(
n1.312

)
. (99)

The final step is to apply the Lindeberg’s principle. In particular, since |Aij | ≤ 3R√
m

and |Gij | ≤ 3R√
m

with probability 1 by Lemma 4, we obtain from Theorem 28 that

|E [h (A)]− E [h (G)]| = O
(
n−0.188

)
. (100)

The proof is complete.

Proof of Proposition 10. Let x̂s ∈ argminx∈B C (x; s,A) and xε ∈ argminx∈Xε ‖x̂s − x‖2. Then
‖x̂s − xε‖22 ≤ nε2. We consider |s| ≤ s0 for some constant s0 > 0. By the Cauchy-Schwarz
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inequality, the triangular inequality and Lemma 3,

1
n
C (xε; s,A)− OPT (s,A) = 1

2n (A (xε + x̂s − 2x0)− 2w)T A (xε − x̂s) + λ

n
(‖xε‖1 − ‖x̂s‖1)

+ ρ

2n
(
‖xε‖22 − ‖x̂s‖

2
2

)
+ s (ψav (xε,x0)− ψav (x̂s,x0)) (101)

≤ 1
2n [‖A‖2 (‖xε‖2 + ‖x̂s‖2 + 2 ‖x0‖2) + 2 ‖w‖2] ‖A‖2 ‖xε − x̂s‖2

+ λ√
n
‖xε − x̂s‖2 + ρ

2n (‖xε‖2 + ‖x̂s‖2) ‖xε − x̂s‖2

+ |s|L
√

5
√

1 + 1
n
‖xε‖22 + 1

n
‖x̂s‖22 + 2

n
‖x0‖22

‖xε − x̂s‖2√
n

(102)

≤ c

2
√
n
‖x̂s − xε‖2 (103)

with high probability for some constant c > 0, in light of the fact that 1
n ‖x̂s‖

2
2 and 1

n ‖xε‖
2
2 are

bounded due to x̂s,xε ∈ B, ‖A‖2 is bounded eventually by the third property in Lemma 4, and
1
n ‖x0‖22 and 1

n ‖w‖
2
2 are bounded eventually. Note that c is independent of s since we consider

|s| ≤ s0. Since OPT (s,A) ≤ OPTε (s,A) ≤ 1
nC (xε; s,A), we then have

lim
n→∞

P (En,ε) = 0, En,ε = {|OPTε (s,A)− OPT (s,A)| > cε} . (104)

On the other hand, since T > M2 as per Lemma 5, with probability 1,

|OPT (s,A)| ≤
∣∣∣∣ 1nC (x0; s,A)

∣∣∣∣ ≤ 1
2n ‖w‖

2
2 + λ

n
‖x0‖1 + ρ

2n ‖x0‖22 + |s| |ψav (x0,x0)| . (105)

Note that |ψav (x0,x0)| ≤ |ψav (x0,x0)− ψav (0,0)|+ψ (0, 0). Then from the fact that 1
n ‖w‖

2
2 and

1
n ‖x0‖22 are bounded, and Lemma 3, we have there exists a constant M , independent of n and ε,
such that |OPT (s,A)| ≤M with probability 1 for sufficiently large n. Similarly, recalling the fact
that x0 ∈ Xε, we have |OPTε (s,A)| ≤M with probability 1 for sufficiently large n. Therefore,

|E [OPTε (s,A)− OPT (s,A)]| ≤ E [|OPTε (s,A)− OPT (s,A)|] (106)

= E
[
|OPTε (s,A)− OPT (s,A)| I

(
E{n,ε

)]
+ E [|OPTε (s,A)− OPT (s,A)| I (En,ε)] (107)

≤ cε+ 2MP (En,ε) . (108)

Taking n → ∞ then ε ↓ 0, we have E [OPTε (s,A)− OPT (s,A)] → 0. Since h−k is continuously
differentiable,

lim
ε↓0

lim
n→∞

∣∣∣E [h−k (OPTε (s,A)− `)
]
− E

[
h−k (OPT (s,A)− `)

]∣∣∣ = 0 (109)

for any ` ∈ R. Note that this also applies to G. Combing this result with Proposition 13, we obtain

lim
n→∞

∣∣∣E [h−k (OPT (s,A)− `)
]
− E

[
h−k (OPT (s,G)− `)

]∣∣∣ = 0 (110)

completing the proof.
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4 The Gaussian Case & AMP
Lemmas 7 and 8 follow from the following result.

Theorem 14. For ψ pseudo-Lipschitz, ψav
(
x̂
(
Ḡ
)
,x0

)
converges to ψ∗ in probability as n→∞,

where ψ∗ is a constant defined as per Eq. (5). Furthermore, 1
nC
(
x̂
(
Ḡ
)

; 0, Ḡ
)
converges to L∗ in

probability as n→∞, where L∗ = L∗ (λ, ρ, σ, δ, pX0) is a (non-random) constant.

Proof of Lemma 7. Immediate from Lemma 6 and Theorem 14.

Proof of Lemma 8. Letting B′ =
{

x ∈ Rn : ‖x‖22 ≤ nT
}
, we have with high probability,

x̂ (G) = argmin
x∈B′

C (x; 0,G) = argmin
x∈B

C (x; 0,G) (111)

by Lemmas 5 and 9. Also by Lemma 5,

x̂
(
Ḡ
)

= argmin
x∈B′

C
(
x; 0, Ḡ

)
(112)

with high probability. Hence,∣∣∣∣OPT (0,G)− 1
n
C
(
x̂
(
Ḡ
)

; 0, Ḡ
)∣∣∣∣ = 1

n

∣∣∣∣min
x∈B′
C (x; 0,G)− min

x∈B′
C
(
x; 0, Ḡ

)∣∣∣∣ (113)

≤ 1
n

max
x∈B′

∣∣∣C (x; 0,G)− C
(
x; 0, Ḡ

)∣∣∣ (114)

≤ 1
2n max

x∈B′

[(∥∥∥G + Ḡ
∥∥∥

2
‖x− x0‖2 + 2 ‖w‖2

) ∥∥∥G− Ḡ
∥∥∥

2
‖x− x0‖2

]
(115)

By the second property in Lemma 4,
∥∥∥G− Ḡ

∥∥∥
2
→ 0 in probability as n → ∞ then R → ∞. The

proof is then completed with Theorem 14, along with the facts that 1
n ‖x‖

2
2 ≤ T for x ∈ B′, 1

n ‖x0‖22
and 1

n ‖w‖
2
2 are bounded eventually,

∥∥∥Ḡ∥∥∥
2
is bounded eventually by Theorem 26, and the third

property in Lemma 4 for boundedness of ‖G‖2.

In the rest of this section, we establish Theorem 14. We use the AMP to construct an iterative
algorithm which solves the elastic net (1), provably in the case of Gaussian matrix Ḡ. In Section
4.1, we describe the algorithm as well as the state evolution equation, which track the behavior
of the AMP in the asymptotics n → ∞. In Section 4.2, we describe the asymptotics of the state
evolution, and show how to relate them to the parameters of the elastic net problem (1). We prove
Theorem 14 in Section 4.3.

As a remark, the work [TAH16] proves a convergence result for the squared error of the regular-
ized M-estimator with Gaussian sensing matrices, using the Gordon’s Gaussian min-max theorem.
The same line of work is extended in [ATH16] to Lipschitz error functions. While there are over-
laps with Theorem 14, in which the elastic net is a special case of the M-estimator, we note a key
difference in that our proof complements with an algorithm that provably solves the elastic net.

As another remark, the AMP we construct here is an extension to the one considered in [BM12],
which obtains a result similar to Theorem 14 for the LASSO, and our proof also follows the same
line. The fact ρ > 0 eases certain parts as compared to the proof in [BM12]. On the other hand,
the bulk of our work here lies in establishing that it is possible to construct the AMP for every
elastic net instances, i.e. for every sets of parameters δ, λ and ρ (cf. Section 4.2).
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4.1 AMP Recursions

Recall the definition of the soft-thresholding function η:

η (x;χ) = sign(x) max(|x| − χ, 0) . (116)

Fix γ > 0. For each γ and for a non-negative sequence of thresholds {χt}t∈N, the AMP iterates are
defined as follows:

xt+1 = 1
γ + 1ηt

(
Ḡ
T

zt + xt
)
, (117)

zt = ȳ − Ḡxt + 1
δ (γ + 1)µ

t−1zt−1 (118)

initialized with x0 = 0 and z0 = ȳ = Ḡx0 + w, in which

µt = 1
n

〈
1, η′t

(
Ḡ
T

zt + xt
)〉

(119)

and ηt (·) ≡ η (·;χt). With an abuse of notation, we will write ηχ (·) for η (·;χ) whenever the context
is clear.
Remark. Given w ∈ Rm, x0 ∈ Rn and M ∈ Rm×n, the (more general) AMP iterates studied in
[BM11] are defined by the iterations

ht+1 = MTmt − 1
m

〈
1, g′t

(
bt,w

)〉
qt, (120)

bt = Mqt − 1
m

〈
1, f ′t

(
ht,x0

)〉
mt−1, (121)

mt = gt
(
bt,w

)
, (122)

qt = ft
(
ht,x0

)
, (123)

with a given initialization q0, and m−1 = 0. Here {gt}t∈N and {ft}t∈N are two sequences of Lipschitz
continuous functions mapping from R2 7→ R, and g′t and f ′t denote the respective derivatives w.r.t.
the first argument. Our AMP iterates (117)-(118) fit this framework, in which we consider Gaussian
matrix Ḡ in place of M , and specialize the iterates to the following:

ht+1 = x0 −
(
Ḡ
T

zt + xt
)
, (124)

bt = w − zt, (125)
mt = −zt, (126)
qt = xt − x0, (127)

with the initialization q0 = −x0. Correspondingly,

gt (r, u) = r − u, ft (r, u) = 1
γ + 1ηt−1 (u− r)− u. (128)

Hence results from [BM11] are applicable to our setting.
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To track the behavior of the AMP iterates in the limit n→∞, we define the following (scalar)
state evolution equation, which is a (scalar) recursion for a non-negative sequence {τt}t∈N:

τ2
t = σ2 + 1

δ
E
[( 1

γ + 1ηt−1 (X0 + τt−1Z)−X0

)2
]
, (129)

τ2
0 = σ2 + 1

δ
M2, (130)

where Z ∼ N (0, 1) independent of X0 and W . Recall that the distributions of X0 and W are those
the empirical distributions of the sequences {x0}n∈N and {w}n∈N converge weakly to. We specify
the choice of thresholds {χt}t∈N:

χt = ατt (131)

in which α > 0 is a pre-specified parameter.
Further, define the following (scalar) recursion for {Rs,t}s,t∈N:

Rs,t = σ2 + 1
δ
E
[( 1
γ + 1ηs−1 (X0 + Zs−1)−X0

)( 1
γ + 1ηt−1 (X0 + Zt−1)−X0

)]
, (132)

R0,t = σ2 + 1
δ
E
[
(−X0)

( 1
γ + 1ηt−1 (X0 + Zt−1)−X0

)]
, (133)

R0,0 = σ2 + 1
δ

M2, (134)

where (Zs, Zt) ∼ N
(

0,
[
Rs,s Rs,t
Rs,t Rt,t

])
, independent of X0 and W . Note that Rt,t = τ2

t for any

t ∈ N.
We have some useful convergence results concerning the AMP.

Lemma 15. For any t > 0, almost surely,

lim
n→∞

ψav
(
xt,x0

)
= E

[
ψ

( 1
γ + 1ηt−1 (X0 + τt−1Z) , X0

)]
, (135)

lim
m→∞

1
m

∥∥∥zt∥∥∥2

2
= τ2

t , (136)

lim
n→∞

µt = P (|X0 + τtZ| ≥ ατt) , (137)

lim
m→∞

1
m

∥∥∥Ḡxt − ȳ
∥∥∥2

2
= τ2

t − σ2 +
Υ 2
t

(
τ2
t−1 − σ2)

δ2 (γ + 1)2 +
(

1− Υt
δ (γ + 1)

)2
σ2 − 2Υt

(
Rt,t−1 − σ2)
δ (γ + 1) ,

(138)

where Υt = P (|X0 + τt−1Z| ≥ ατt−1) and ψ is pseudo-Lipschitz.

The following lemma states that we can unambiguously use a sequence of Gaussian random
variables {Zt}t∈N to describe {Rs,t}s,t∈N in the recursion (132).

Lemma 16. For any k > 0, the k × k matrix Rk×k ≡ {Rs,t}0≤s,t<k is positive definite.

The proofs of the above lemmas are deferred to Section 5.
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4.2 Asymptotics of the AMP State Evolution

Recall Eq. (2), (3) and (4) in Section 1.2. It should be recognized that τ∗ is the limit of τt as
t→∞, should it exist. In other words, τ∗ is the solution to the fixed-point equation

τ2 = F
(
τ2, α, γ

)
(139)

in which
F
(
τ2, α, γ

)
= σ2 + 1

δ
E
[( 1

γ + 1ηατ (X0 + τZ)−X0

)2
]
. (140)

Recall that the AMP iterates are determined by α and γ. To specify α and γ, we have to calibrate
the AMP with the the parameters λ and ρ of the elastic net (1), via Eq. (3) and (4). For this
purpose, they are called the calibration equations.

Let αmin = max {0, α∗min}, where α∗min = α∗min (γ, δ) is the unique solution u to(
1 + u2

)
Φ (−u)− uφ (u) = δ (γ + 1)2

2 (141)

Its uniqueness is easy to see as follows. Let g (u) =
(
1 + u2)Φ (−u) − uφ (u). Since g′ (u) =

2uΦ (−u) − 2φ (u) < 0, g is decreasing, proving the uniqueness of α∗min. Note that only when
δ (γ + 1)2 ∈ (0, 1) would α∗min be positive, which necessarily requires δ < 1.

Lemma 17. For any α > αmin, τ∗ exists and is unique. Furthermore, for all t ≥ 0, max {τ0, τ∗} ≥
τt ≥ min {τ0, τ∗} > 0.

Lemma 18. For each δ > 0, λ > 0 and γ > 0, there exists α > αmin that satisfies Eq. (3).

Lemma 19. Fix δ > 0 and λ > 0. There exist γ0 > 0 and continuously differentiable γ 7→ τ∗ (γ)
and γ 7→ α (γ) defined on (−γ0,∞), such that at each γ ∈ [0,∞), Eq. (2) and (3) are satisfied.

Lemma 20. Fix δ > 0 and λ > 0. There exist γ0 > 0 and continuously differentiable γ 7→ ρ (γ)
defined on (−γ0,∞), such that at each γ ∈ [0,∞), Eq. (2), (3) and (4) are satisfied, ρ → 0 as
γ → 0, and ρ→∞ as γ →∞.

These lemmas show that given λ and ρ from the elastic net problem (1), one can construct a
corresponding AMP algorithm and computes its high-dimensional behavior at convergence, i.e. as
n→∞ then t→∞. The proofs of these lemmas are deferred to Section 5.

4.3 Proof of Theorem 14

For brevity, let xt = xt
(
Ḡ
)
be the t-th AMP iterate, and x̂ = x̂

(
Ḡ
)
be a minimizer to the elastic

net problem (1). First define

ut = 1
ατt−1

[
Ḡ
T

zt−1 + xt−1 − (γ + 1) xt
]
. (142)

From Eq. (117), we see that ut ∈ ∂
∥∥xt∥∥1, since x = η (r;χ) if and only if there exists u ∈ ∂ ‖x‖1

such that x + χu = r. In addition, define

vt = Ḡ
T
[
Ḡ
(
xt − x0

)
−w

]
+ λut + ρxt. (143)

In other words, vt is a subgradient of the elastic net’s objective function at xt.
The following lemma shows that the AMP iterates converges as n→∞ then t→∞.
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Lemma 21. Almost surely,

lim
t→∞

lim
n→∞

1
n

∥∥∥xt − xt−1
∥∥∥2

2
= 0, (144)

lim
t→∞

lim
m→∞

1
m

∥∥∥zt − zt−1
∥∥∥2

2
= 0. (145)

The next lemma shows that the AMP converges to a point where vt vanishes. This is essentially
a consequence of the calibration equations.

Lemma 22. Almost surely, limt→∞ limn→∞
1
n

∥∥vt∥∥2
2 = 0.

The proofs of these two lemmas are deferred to Section 5. The following proposition shows
that the AMP solves the elastic net in the limit n → ∞ then t → ∞. This is key to establishing
Theorem 14.

Proposition 23. Almost surely, limt→∞ limn→∞
1
n

∥∥xt − x̂
∥∥2

2 = 0.

Proof. We have:

0 ≤ C
(
xt; 0, Ḡ

)
− C

(
x̂; 0, Ḡ

)
(146)

=
(
xt − x̂

)T
vt + λ

[∥∥∥xt∥∥∥
1
− ‖x̂‖1 −

(
xt − x̂

)T
ut
]
− 1

2

∥∥∥Ḡ (
xt − x̂

)∥∥∥2

2
− ρ

2

∥∥∥xt − x̂
∥∥∥2

2
(147)

≤
∥∥∥xt − x̂

∥∥∥
2

∥∥∥vt∥∥∥
2
− ρ

2

∥∥∥xt − x̂
∥∥∥2

2
(148)

which yields
ρ

2

∥∥∥xt − x̂
∥∥∥

2
≤
∥∥∥vt∥∥∥

2
(149)

where we use the fact ut ∈ ∂
∥∥xt∥∥1 and convexity of ‖·‖1. The proof is completed in light of Lemma

22.

Proof of Theorem 14. We have∣∣∣ψav
(
x̂
(
Ḡ
)
,x0

)
− ψav

(
xt,x0

)∣∣∣→ 0 (150)

in probability as n→∞ then t→∞, immediately from Proposition 23, Lemma 3, along with the
facts that 1

n

∥∥∥x̂ (Ḡ
)∥∥∥2

2
≤ T with high probability from Lemma 5, limn→∞

1
n

∥∥xt∥∥2
2 <∞ by Lemma

15, and 1
n ‖x0‖22 is bounded eventually. Furthermore, Proposition 23 also implies that∣∣∣∣ 1nC

(
x̂
(
Ḡ
)

; 0, Ḡ
)
− 1
n
C
(
xt; 0, Ḡ

)∣∣∣∣→ 0 (151)

in probability as n→∞ then t→∞. Then from Lemma 15, we obtain:

ψ∗ = E
[
ψ

( 1
γ + 1ηατ∗ (X0 + τ∗Z) , X0

)]
, (152)

L∗ = τ2
∗
2

(
1− Υ∗

δ (γ + 1)

)2
+ λ

γ + 1E [ηατ∗ (|X0 + τ∗Z|)] + ρ

2 (γ + 1)2E
[
η2
ατ∗ (X0 + τ∗Z)

]
, (153)

in which Υ∗ = P (|X0 + τ∗Z| ≥ ατ∗).
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5 Proof of Auxiliary Lemmas

5.1 Proof of Lemma 3

Using the definition of pseudo-Lipschitz functions and the Cauchy-Schwarz inequality, we get

|ψav (u,v)− ψav (r, t)| ≤ 1
n

n∑
i=1
|ψ (ui, vi)− ψ (ri, ti)| (154)

≤ L

n

n∑
i=1

(|ui − ri|+ |vi − ti|) (1 + |ui|+ |vi|+ |ri|+ |ti|) (155)

≤ L

n
(‖u− r‖2 + ‖v − t‖2)

√√√√ n∑
i=1

(1 + |ui|+ |vi|+ |ri|+ |ti|)2 (156)

≤ L
√

5‖u− r‖2 + ‖v − t‖2√
n

√
1 + ‖u‖

2
2

n
+ ‖v‖

2
2

n
+ ‖r‖

2
2

n
+ ‖t‖

2
2

n
. (157)

5.2 Proof of Lemma 4

Let E
[∣∣∣√mĀij∣∣∣p] = Kp and recall Kp < ∞. To show the first property, since E

[
Āij
]

= 0 and

mE
[
Ā2
ij

]
= 1, we have:

mE
[
Ã2
ij

]
= mE

[
Ā2
ijI
(√

m
∣∣∣Āij∣∣∣ ≤ R

)]
−m

(
E
[
ĀijI

(√
m
∣∣∣Āij∣∣∣ ≤ R

)])2
(158)

= 1−mE
[
Ā2
ijI
(√

m
∣∣∣Āij∣∣∣ > R

)]
−m

(
E
[
ĀijI

(√
m
∣∣∣Āij∣∣∣ > R

)])2
. (159)

Note that

mE
[
Ā2
ijI
(√

m
∣∣∣Āij∣∣∣ > R

)]
≤

E
[
m2Ā4

ij

]
R2 ≤

K4/p
p

R2 . (160)

Similarly, m
(
E
[
ĀijI

(√
m
∣∣∣Āij∣∣∣ > R

)])2
→ 0. As such, mE

[
Ã2
ij

]
= 1 + oR (1), where oR (1) → 0

as R → ∞ and oR (1) is independent of n. Combining this with the fact
√
m
∣∣∣Ãij∣∣∣ ≤ 2R with

probability 1 proves the first property.
To prove the second property, since E

[
Āij
]

= 0, considering B = Ā− Ã, we then have:

E
[
B4
ij

]
= E

[(
ĀijI

(√
m
∣∣∣Āij∣∣∣ > R

)
− E

[
ĀijI

(√
m
∣∣∣Āij∣∣∣ > R

)])4
]

(161)

≤ 8E
[
Ā4
ijI
(√

m
∣∣∣Āij∣∣∣ > R

)]
+ 8

(
E
[
ĀijI

(√
m
∣∣∣Āij∣∣∣ > R

)])4
(162)

(a)
≤ 16E

[
Ā4
ijI
(√

m
∣∣∣Āij∣∣∣ > R

)]
(163)

≤ 16
E
[∣∣∣√mĀij∣∣∣p]
m2Rp−4 (164)

= 16Kp

m2Rp−4 (165)
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where (a) is by Jensen’s inequality. Consequently,

E
[
B2
ij

]
≤
√
E
[
B4
ij

]
≤ 4

√
Kp

mR(p−4)/2 . (166)

From [Lat05], for some universal constant c,

E [‖B‖2] ≤ c

max
i∈[m]

√√√√ n∑
j=1

E
[
B2
ij

]
+ max

j∈[n]

√√√√ m∑
i=1

E
[
B2
ij

]
+ 4

√√√√ m∑
i=1

n∑
j=1

E
[
B4
ij

] = oR (1) . (167)

Furthermore, by Jensen’s inequality,

E
[
m2Ã4

ij

]
≤ 8E

[
m2Ā4

ijI
(√

m
∣∣∣Āij∣∣∣ ≤ R

)]
+ 8

(
E
[√
mĀijI

(√
m
∣∣∣Āij∣∣∣ ≤ R

)])4
(168)

≤ 16E
[
m2Ā4

ijI
(√

m
∣∣∣Āij∣∣∣ ≤ R

)]
(169)

≤ 16E
[
m2Ā4

ij

]
(170)

≤ 16K4/p
p (171)

and hence again, E
[∥∥∥Ã∥∥∥

2

]
is bounded. By the triangular inequality,

E
[∥∥∥A− Ā

∥∥∥
2

]
≤ E [‖B‖2] + E

[∥∥∥A− Ã
∥∥∥

2

]
(172)

= oR (1) +
∣∣∣∣1− (mE

[
Ã2
ij

])−1/2
∣∣∣∣E [∥∥∥Ã∥∥∥2

]
= oR (1) . (173)

The property then follows immediately from Markov’s inequality.
The third property follows immediately from the first property and Theorem 26, recalling that

E [Aij ] = 0, E
[
mA2

ij

]
= 1, and

E
[
m2A4

ij

]
=

E
[
m2Ã4

ij

]
(
E
[
mÃ2

ij

])2 =
16K4/p

p

(1 + oR (1))2 (174)

which is bounded for sufficiently large R.

5.3 Proof of Lemma 5

The proof is the same for both Ā and A. Let x̂ = x̂ (A) for brevity. Since the problem is convex,
by the KKT condition, there exists u ∈ ∂ ‖x̂‖1 such that with high probability,

‖x̂‖2 =
∥∥∥∥[ATA + ρI

]−1 (
−λu + ATAx0 + ATw

)∥∥∥∥
2

(175)

≤ 1
ρ

(
λ ‖u‖2 + ‖A‖22 ‖x0‖2 + ‖A‖2 ‖w‖2

)
(176)

≤ 1
ρ

[
λ
√
n+

(
1 + 1√

δ

)2√
nM2 +

(
1 + 1√

δ

)
σ
√
m+ 0.01

√
n

]
(177)

where the last step is by the third property in Lemma 4, and the fact that |ui| ≤ 1 for all i ∈ [n].
This yields a lower bound on T, and we choose T to be the maximum between this bound and
100M2.

24



5.4 Proof of Lemmas 15 and 16

We state a useful convergence result concerning the AMP iterates (124)-(127).

Proposition 24. Let ψ be a pseudo-Lipschitz function. Consider the AMP iterates (124)-(127).
Then for all s, t ∈ N,

lim
n→∞

ψav
(
ht+1,x0

)
= E [ψ (Zt, X0)] , (178)

lim
m→∞

1
m

〈
bt, bs

〉
= Rs,t − σ2, (179)

lim
m→∞

1
m

〈
bt,w

〉
= 0, (180)

almost surely.

Proof. The first and last equations are immediate from Lemma 27.1. To see the second equation,
note that almost surely,

lim
n→∞

1
m

〈
bt, bs

〉 (a)= lim
n→∞

1
m

〈
mt,ms

〉
+ lim
n→∞

1
m

〈
bt + bs,w

〉
− σ2 (181)

(b)= lim
n→∞

1
n

〈
ht+1,hs+1

〉
− σ2 (182)

where (a) is by Eq. (125) and (126), and (b) is by Lemma 27. One can prove by induction that
limn→∞

1
n

〈
ht+1,hs+1

〉
= Rs,t almost surely. This is similar to [BM12, Theorem 4.2] and hence

omitted.

Proof of Lemma 15. The first equation is a direct application of Proposition 24 to a pseudo-
Lipschitz mapping that maps

(
ht+1
i , x0,i

)
to ψ

(
1

γ+1ηt−1
(
x0,i − ht+1

i

)
, x0,i

)
. To see the second

equation, notice that

lim
m→∞

1
m

∥∥∥zt∥∥∥2

2
= lim

m→∞
1
m

∥∥∥mt
∥∥∥2

2
= lim

n→∞
1
n

∥∥∥ht∥∥∥2

2
(183)

almost surely by Lemma 27.2, and the result follows from Proposition 24 applied to
(
ht+1
i , x0,i

)
7→(

ht+1
i

)2
.

To see the third equation, note that Proposition 24 implies, almost surely, the empirical dis-
tribution of

{
x0,i − ht+1

i

}
i∈[n]

converges weakly to the distribution of X0 + τtZ, which admits a
density since τt ≥ σ > 0. As such, almost surely,

lim
n→∞

1
n

n∑
i=1

I
(∣∣∣x0,i − ht+1

i

∣∣∣ ≥ ατt) = P (|X0 + τtZ| ≥ ατt) (184)
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which yields the third equation. Finally, almost surely,

lim
m→∞

1
m

∥∥∥Ḡxt − ȳ
∥∥∥2

2

(a)= lim
m→∞

1
m

∥∥∥∥zt − 1
δ (γ + 1)Υtz

t−1
∥∥∥∥2

2
(185)

= lim
m→∞

1
m

∥∥∥∥bt − 1
δ (γ + 1)Υtb

t−1 −
(

1− 1
δ (γ + 1)Υt

)
w

∥∥∥∥2

2
(186)

= lim
m→∞

1
m

∥∥∥bt∥∥∥2

2
+ Υ 2

t

δ2 (γ + 1)2 lim
m→∞

1
m

∥∥∥bt−1
∥∥∥2

2
+
(

1− Υt
δ (γ + 1)

)2
σ2

− 2 Υt
δ (γ + 1) lim

m→∞

〈
bt, bt−1

〉
− 2

(
1− Υt

δ (γ + 1)

)
lim
m→∞

1
m

〈
bt,w

〉
+ 2 Υt

δ (γ + 1)

(
1− Υt

δ (γ + 1)

)
lim
m→∞

1
m

〈
bt−1,w

〉
(187)

(b)= τ2
t − σ2 +

Υ 2
t

(
τ2
t−1 − σ2)

δ2 (γ + 1)2 +
(

1− Υt
δ (γ + 1)

)2
σ2 − 2Υt

(
Rt,t−1 − σ2)
δ (γ + 1)

(188)

where (a) is by the third equation and Eq. (118), and (b) is by Proposition 24.

Proof of Lemma 16. By Proposition 24, almost surely,

Rs,t = lim
m→∞

1
m

〈
bt, bs

〉
+ σ2 = lim

m→∞
1
m

〈
mt,ms

〉
. (189)

The thesis follows from [BM12, Lemma 5.2].

5.5 Proof of Lemma 17

We have:

δ (γ + 1)2 ∂F
∂ (τ2) =

(
1 + α2

)
E
[
Φ
(
X0
τ
− α

)
+ Φ

(
−X0
τ
− α

)]
− E

[(
X0
τ

+ α

)
φ

(
X0
τ
− α

)
−
(
X0
τ
− α

)
φ

(
X0
τ

+ α

)]
+ γ

τ
E
[
−X0φ

(
X0
τ
− α

)
+X0φ

(
X0
τ

+ α

)]
+ α

γ

τ
E
[
X0Φ

(
X0
τ
− α

)
−X0Φ

(
−X0
τ
− α

)]
(190)

which then yields

δ (γ + 1)2 ∂2F
∂ (τ2)2 = −1 + γ

2τ2 E
[
X3

0
τ3

(
φ

(
X0
τ
− α

)
− φ

(
X0
τ

+ α

))]

− γ

2τ3E
[
αX0Φ

(
X0
τ
− α

)
−X0φ

(
X0
τ
− α

)]
+ γ

2τ3E
[
αX0Φ

(
−X0
τ
− α

)
−X0φ

(
X0
τ

+ α

)]
. (191)

26



We have u3 [φ (u− α)− φ (−u− α)] ≥ 0 for any u and α ≥ 0, since φ (u− α) ≥ φ (−u− α) if u ≥ 0
and φ (u− α) ≤ φ (−u− α) if u ≤ 0. Also, letting f (u) = αΦ (u− α)− φ (u− α), we have

f (u)− f (−u) =
uˆ

−u

f ′ (t) dt =
uˆ

0

(tφ (t− α)− tφ (−t− α)) dt. (192)

From this, it is easy to see that for α ≥ 0, with u ≥ 0, f (u) ≥ f (−u), and with u ≤ 0, f (u) ≤
f (−u), which implies uf (u) − uf (−u) ≥ 0 for any u. Together with the fact γ > 0, we have
∂2F
∂(τ2)2 ≤ 0, i.e. F is concave in τ2.

Next it is easy to see that

lim
τ→∞

∂F
∂ (τ2) = 2

δ (γ + 1)2

[(
1 + α2

)
Φ (−α)− αφ (α)

]
. (193)

Let g (α) =
(
1 + α2)Φ (−α)−αφ (α). Since g′ (α) = 2αΦ (−α)− 2φ (α) < 0, g is decreasing. Since

α > α∗min and recalling that g (α∗min) = 1
2δ (γ + 1)2, we then have

0 < lim
τ→∞

∂F
∂ (τ2) < 1. (194)

Combining with the proven concavity, we have F is increasing in τ2. Thereby τ∗ exists uniquely
and max {τ0, τ∗} ≥ τt ≥ min {τ0, τ∗} for all t ≥ 0. Also, min {τ0, τ∗} ≥ σ > 0.

5.6 Proof of Lemma 18

We claim the following:

• α 7→ τ2
∗ (α) is continuously differentiable on (αmin,∞), and therefore so is α 7→ λ (α),

• λ (α)→ +∞ as α→∞,

• if δ < 1 and α∗min > 0, λ (α)→ −∞ as α ↓ α∗min,

• if δ < 1 and α∗min < 0, λ (α)→ 0 as α ↓ 0,

• if δ ≥ 1, λ (α)→ 0 as α ↓ 0,

• if δ < 1 and α∗min = 0, lim supα↓0 λ (α) ≤ 0.

where α 7→ λ (α) is defined via Eq. (3). The thesis follows from these claims.
To see the first claim, note that α 7→ τ2

∗ (α) is a well-defined mapping by uniqueness of τ∗ for
each α, from Lemma 17. As shown in the proof of Lemma 17, we have that τ2 7→ F

(
τ2, α, γ

)
is

concave and increasing, and 0 < limτ→∞
∂F
∂(τ2) < 1 for any α > 0. Combining with the fact that

τ∗ > 0 by Lemma 17, we have
0 < ∂F

∂ (τ2)
(
τ2
∗ , α, γ

)
< 1 (195)

for any α > 0. Also,
(
τ2, α

)
7→ F

(
τ2, α, γ

)
is continuously differentiable. Then the implicit function

theorem applied to
(
τ2, α

)
7→ τ2 − F

(
τ2, α, γ

)
shows continuous differentiability of α 7→ τ2

∗ (α) on
(0,∞) and hence on (αmin,∞).
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The second claim is immediate: as α → ∞, we have τ2
∗ → σ2 + 1

δM2 > 0 and consequently
P (|X0 + τ∗Z| ≥ ατ∗)→ 0. It is then easy to see that λ (α)→ +∞ in this limit.

We show the third claim. We first show that τ∗ → +∞ as α ↓ α∗min. Indeed, by concavity of
τ2 7→ F

(
τ2, α, γ

)
,

τ2
∗ ≥ F (0, α, γ) + τ2

∗ lim
τ→∞

∂F
∂ (τ2) (196)

= σ2 + γ2M2

δ (γ + 1)2 + τ2
∗ lim
τ→∞

∂F
∂ (τ2) . (197)

It was proven in the proof of Lemma 17 that as α ↓ α∗min, we have limτ→∞
∂F
∂(τ2) ↑ 1. Since σ > 0,

we have τ∗ → +∞. We thus have in the limit α ↓ α∗min, P (|X0 + τ∗Z| ≥ ατ∗)→ 2Φ (−α∗min). Using
the definition of α∗min,

δ (γ + 1)2

2 =
(
1 + (α∗min)2

)
Φ (−α∗min)− α∗minφ (α∗min) ≤ φ (α∗min)

α∗min
, (198)

we then have

lim
α↓α∗min

λ (α) = lim
α↓α∗min

α∗minτ∗

(
1− 2Φ (−α∗min)

δ (γ + 1)

)
(199)

= lim
α↓α∗min

α∗minτ∗

1− 2
δ
(
1 + (α∗min)2

) (δ (γ + 1)
2 + α∗minφ (α∗min)

γ + 1

) (200)

≤ lim
α↓α∗min

α∗minτ∗ [1− (γ + 1)] = −∞ (201)

since γ > 0. This completes the proof of the third claim.
We show the fourth and fifth claims. The solution to the fixed-point equation τ2 = F

(
τ2, 0, γ

)
satisfies

τ2 = σ2 + γ2M2

δ (γ + 1)2 + τ2

δ (γ + 1)2 . (202)

In the fourth claim, α∗min < 0 , which implies δ (γ + 1)2 > 1. In the fifth claim, since δ ≥ 1 and
γ > 0, we also have δ (γ + 1)2 > 1. Then as α ↓ 0,

τ∗ →
(

1− 1
δ (γ + 1)2

)−1(
σ2 + γ2M2

δ (γ + 1)2

)
<∞

by continuity of α 7→ τ2
∗ (α), shown in the first claim, and since τ∗ > 0 by Lemma 17. As such,

λ (α)→ 0.
To see the sixth claim, a similar argument to the third claim shows that τ∗ →∞ as α ↓ 0, since

α∗min = 0. Furthermore α∗min = 0 implies δ (γ + 1)2 = 1. As such,

lim sup
α↓0

λ (α) =
(

1− 1√
δ

)
lim sup
α↓0

(ατ∗) . (203)

For δ < 1, this shows lim supα↓0 λ (α) ≤ 0.
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5.7 Proof of Lemma 19

Let us define

D1 = E
[
Φ
(
X0
τ∗
− α

)
+ Φ

(
−X0
τ∗
− α

)]
, (204)

D2 = E
[
φ

(
X0
τ∗
− α

)
+ φ

(
X0
τ∗

+ α

)]
, (205)

D3 = E
[
X0
τ∗
φ

(
X0
τ∗
− α

)
− X0

τ∗
φ

(
X0
τ∗

+ α

)]
, (206)

D4 = E
[
X0
τ∗

Φ
(
X0
τ∗
− α

)
− X0

τ∗
Φ
(
−X0
τ∗
− α

)]
, (207)

and rewrite Eq. (3) as f
(
τ2
∗ , α, γ

)
= 0 in which

f
(
τ2, α, γ

)
= λ

ατ
+ 1
δ (γ + 1)P (|X0 + τZ| ≥ ατ)− 1. (208)

Note that D1, D2 > 0 and D3, D4 ≥ 0. To see why D3 ≥ 0, we have for α > 0, φ (u− α) >
φ (−u− α) if u > 0 and φ (u− α) < φ (−u− α) if u < 0. And to see why D4 ≥ 0, consider g (u) =
uΦ (u− α) − uΦ (−u− α). We have g′ (u) = uφ (u− α) + uφ (u+ α) + Φ (u− α) − Φ (−u− α).
When u < 0, g′ (u) < 0, and when u ≥ 0, g′ (u) ≥ 0. Then since g (0) = 0, we have g (u) ≥ 0 for
any u.

We have:

δ (γ + 1)2 ∂F
∂α

(
τ2
∗ , α, γ

)
= 2ατ2

∗D1 − 2τ2
∗D2 + 2γτ2

∗D4, (209)

δ (γ + 1)2 ∂F
∂ (τ2)

(
τ2
∗ , α, γ

)
=
(
1 + α2

)
D1 −D3 − αD2 − γD3 + αγD4, (210)

∂f

∂ (τ2)
(
τ2
∗ , α, γ

)
= − λ

2ατ3
∗
− 1

2δ (γ + 1) τ2
∗
D3, (211)

∂f

∂α

(
τ2
∗ , α, γ

)
= − λ

α2τ∗
− 1
δ (γ + 1)D2. (212)

Consider the following:

∆ = δ (γ + 1)2
{

∂f

∂ (τ2)
(
τ2
∗ , α, γ

) [
−∂F
∂α

(
τ2
∗ , α, γ

)]
− ∂f

∂α

(
τ2
∗ , α, γ

) [
1− ∂F

∂ (τ2)
(
τ2
∗ , α, γ

)]}
.

(213)
We claim that ∆ > 0 for any γ ≥ 0. The thesis then follows from the implicit function theorem.

To show the claim, we first consider γ > 0. Note that from the proof of Lemma 18, 0 <
∂F
∂(τ2)

(
τ2
∗ , α, γ

)
< 1. Also note that ∂f

∂α

(
τ2
∗ , α, γ

)
< 0 and ∂f

∂(τ2)
(
τ2
∗ , α, γ

)
≤ 0. In the case αD1−D2+

γD4 ≥ 0, we have ∂F
∂α

(
τ2
∗ , α, γ

)
≥ 0, which then leads to ∆ > 0. Consider the case αD1−D2+γD4 <

0. We express ∆ as

∆ = λ

α2τ∗

[
δ (γ + 1)2 −D1 + γD3

]
+ 1
δ (γ + 1)

[
D3 (αD1 + γD4) +D2

(
δ (γ + 1)2 −D1 + γD3 − α (αD1 −D2 + γD4)

)]
.

(214)
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Note that since λ > 0, we have D1 < δ (γ + 1)2. Then it is easy to see that ∆ > 0 in this case.
When γ = 0, the state evolution is then reduced to the one defined in [BM12]. We still have

that there exists α > αmin that satisfies Eq. (3), similar to Lemma 18, and 0 < ∂F
∂(τ2)

(
τ2
∗ , α, 0

)
< 1.

The above argument for the case γ > 0 is then applicable.

5.8 Proof of Lemma 20

The existence of continuously differentiable γ 7→ ρ (γ) is immediate from Lemma 19.
Consider γ = 0. The state evolution is then reduced to the one defined in [BM12]. We note

some relevant facts in this case (which can also be seen from the arguments in the proof of Lemma
19):

• α 7→ τ2
∗ (α) is continuously differentiable on (αmin,∞), and therefore so is α 7→ λ (α),

• λ (α)→ +∞ and τ∗ tends to a finite non-zero constant as α→∞,

• τ∗ → +∞ as α ↓ α∗min,

• if δ < 1 (hence α∗min > 0), λ (α)→ −∞ as α ↓ α∗min,

• if δ > 1 (hence α∗min < 0), λ (α) → 0 as α ↓ 0, and τ∗ tends to a finite non-zero constant as
α ↓ α∗min,

• if δ = 1 (hence α∗min = 0), lim supα↓0 λ (α) ≤ 0.

Furthermore the mapping λ 7→ α (λ) is well-defined [BM12, Corollary 1.7]. Therefore, with a given
λ > 0, α and τ∗ are non-zero and finite, such that α > αmin, when γ = 0. Then ρ→ 0 in the limit
γ → 0.

Consider γ → ∞. In this limit, F
(
τ2, α, γ

)
→ σ2 + 1

δM2, and hence τ2
∗ → σ2 + 1

δM2 non-zero
and finite. We also see from Eq. (3) that ατ∗ → λ, and consequently, α tends to a finite constant.
Therefore ρ→∞.

5.9 Proof of Lemma 21

First, notice that bt − bt−1 = zt − zt−1 and qt − qt−1 = xt − xt−1. By Lemma 27.2,

lim
n→∞

1
nδ

∥∥∥qt − qt−1
∥∥∥2

2
= lim

m→∞
1
m

∥∥∥bt − bt−1
∥∥∥2

2
(215)

almost surely. By Proposition 24, almost surely,

lim
n→∞

1
nδ

∥∥∥bt − bt−1
∥∥∥2

2
=
(
Rt,t − σ2

)
+
(
Rt−1,t−1 − σ2

)
−2

(
Rt,t−1 − σ2

)
= Rt,t+Rt−1,t−1−2Rt,t−1.

(216)
A simple modification of the proof of [BM12, Lemma 5.7] yields that Rt,t +Rt−1,t−1 − 2Rt,t−1 → 0
as t→∞. This completes the proof.
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5.10 Proof of Lemma 22

Since λ > 0, by Eq. (3) and the fact that

lim
t→∞

lim
n→∞

µt = P (|X0 + τ∗Z| ≥ ατ∗) (217)

from Lemma 15, for sufficiently large n and t, we have 1− 1
δ(γ+1)µ

t−1 > 0. Consequently,

vt
(a)= λ

ατt−1

[
Ḡ
T

zt−1 + xt−1 − (γ + 1) xt
]

+ Ḡ
T

Ḡ
(
xt − x0

)
− Ḡ

T
w + λγ

ατ∗
xt (218)

(b)= λ

ατt−1

(
1− 1

δ (γ + 1)µ
t−1
)−1

Ḡ
T

(
Ḡx0 + w − Ḡxt−1 + µt−2zt−2 − µt−1zt−1

δ (γ + 1)

)

+ λ

ατt−1

[
xt−1 − (γ + 1) xt

]
+ Ḡ

T
Ḡ
(
xt − x0

)
− Ḡ

T
w + λγ

ατ∗
xt (219)

=
[

λ

ατt−1

(
1− 1

δ (γ + 1)µ
t−1
)−1
− 1

]
Ḡ
T
(
Ḡx0 + w − Ḡxt−1

)

+ λ

ατt−1δ (γ + 1)

(
1− µt−1

δ (γ + 1)

)−1

Ḡ
T
[(
µt−2 − µt−1

)
zt−2 + µt−1

(
zt−2 − zt−1

)]
+
(

λ

ατt−1
I + Ḡ

T
Ḡ

)(
xt − xt−1

)
+
(
λγ

ατ∗
− λγ

ατt−1

)
xt (220)

where (a) is from Eq. (142) and (4), and (b) is from Eq. (118). Therefore,∥∥∥vt∥∥∥
2
≤
∣∣∣∣∣ λ

ατt−1

(
1− 1

δ (γ + 1)µ
t−1
)−1
− 1

∣∣∣∣∣ ∥∥∥ḠT
(
Ḡx0 + w − Ḡxt−1

)∥∥∥
2

+ λ

ατt−1δ (γ + 1)

(
1− µt−1

δ (γ + 1)

)−1 ∥∥∥Ḡ∥∥∥
2

(∣∣∣µt−2 − µt−1
∣∣∣ ∥∥∥zt−2

∥∥∥
2

+ µt−1
∥∥∥zt−2 − zt−1

∥∥∥
2

)
+
∥∥∥∥ λ

ατt−1
I + Ḡ

T
Ḡ

∥∥∥∥
2

∥∥∥xt − xt−1
∥∥∥

2
+ λγ

α

∣∣∣∣ 1
τ∗
− 1
τt−1

∣∣∣∣ ∥∥∥xt∥∥∥2
. (221)

Note that almost surely, by Theorem 26 and Lemma 15,

lim
n→∞

∥∥∥∥ λ

ατt−1
I + Ḡ

T
Ḡ

∥∥∥∥
2
≤ λ

ατt−1
+ lim
n→∞

∥∥∥Ḡ∥∥∥2

2
<∞, (222)

lim
n→∞

1
n

∥∥∥xt∥∥∥2

2
<∞, (223)

lim
n→∞

1
n
‖x0‖22 = M2 <∞, (224)

lim
n→∞

1√
n

∥∥∥ḠT
(
Ḡx0 + w − Ḡxt−1

)∥∥∥
2
≤ lim

n→∞

∥∥∥Ḡ∥∥∥2

2

(√
M2 + lim

n→∞
1√
n

∥∥∥xt−1
∥∥∥

2

)
+

+ σ lim
n→∞

∥∥∥Ḡ∥∥∥
2
<∞, (225)

lim
m→∞

1
n

∥∥∥zt∥∥∥2

2
<∞. (226)

The proof is complete with the calibration equation (3), the fact that τt−1 → τ∗, along with Lemma
21.
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5.11 Uniqueness of α, τ∗ and γ

Recall Eq. (2), (3) and (4) which relate ρ and λ of the elastic net problem to α, τ∗ and γ.

Corollary 25. Fix λ > 0 and ρ > 0. There exist uniquely α, τ∗ and γ that satisfy Eq. (2), (3)
and (4).

Proof. This is a consequence of Theorem 1. Indeed, the existence follows from the lemmas in
Section 4.2, so we only need to prove uniqueness. By Theorem 1, we have:

1
n

∥∥∥x̂ (Ā
)
− x0

∥∥∥2

2
→ δ

(
τ2
∗ − σ2

)
(227)

in probability as n→∞. Since x̂
(
Ā
)
is unique and is determined by the elastic net’s parameters,

we deduce that τ∗ must be unique. We also have:

1
n

∥∥∥x̂ (Ā
)∥∥∥

1
→ E

[∣∣∣∣ 1
γ + 1η (X0 + τ∗Z;ατ∗)

∣∣∣∣] (228)

= E
[∣∣∣∣∣ 1

ρ
λατ∗ + 1η (X0 + τ∗Z;ατ∗)

∣∣∣∣∣
]

(229)

in probability, where we use Eq. (4). Given a fixed τ∗ > 0, recalling that the support of the
distribution of Z is R since Z ∼ N (0, 1), we have the right-hand side decreases as ατ∗ increases.
Therefore ατ∗ and consequently α must be unique. Finally, since γ = ρ

λατ∗, this implies uniqueness
of γ, completing the proof.

6 Useful Facts
We state three useful known results. The first concerns with the Bai-Yin law on the convergence
of the maximum singular values of random matrices. The second concerns with the convergence
of the general AMP iterates (120)-(123). The third is a variant of the Lindeberg’s principle, which
can be established following [Cha06, KM11]. A proof for the third result is included for reference.

Theorem 26 (Bai-Yin law [BY93]). Let M ∈ Rm×n be a random matrix with i.i.d. entries in which
E [Mij ] = 0, E

[
M2
ij

]
= 1, E

[
M4
ij

]
<∞ and m

n → δ > 0 as n→∞. Then ‖M‖2 and σmin (M) (the

minimum singular value of M) converge almost surely to 1√
δ

+ 1 and max
{

1− 1√
δ
, 0
}
respectively,

as n→∞.

Lemma 27 ([BM11, Part of Lemma 1]). Let {M (n)}n∈N be a sequence of matrices in n, in which
M ∈ Rm×n with i.i.d. entries Mij ∼ N

(
0, 1

m

)
, and m

n → δ > 0. Let {x0 (n)}n∈N, {w (n)}n∈N
and

{
q0 (n)

}
n∈N be sequences of vectors whose empirical distributions converge weakly to probability

measures pX0, pW and pQ on R, in which E
[
X2k−2

0

]
< ∞, E

[
W 2k−2

]
< ∞ and E

[
Q2k−2

]
< ∞,

for a given integer k ≥ 2.
Recall the general AMP iterates (120)-(123). Consider sequences of non-negative scalars {τt}t∈N

and {σt}t∈N which follow the recursions:

τ2
t = E

[
gt (σtZ,W )2

]
, σ2

t = 1
δ
E
[
ft (τt−1Z,X0)2

]
, (230)
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where Z ∼ N (0, 1) independent of X0 and W , with the initialization σ2
0 = 1

δE
[
Q2]. Then for all

t ∈ N:

1. for all pseudo-Lipschitz functions φh, φb : Rt+2 → R of order k,

1
n

n∑
i=1

φh
(
h1
i , ..., h

t+1
i , x0,i

)
→ E [φh (τ0Z0, ..., τtZt, X0)] , (231)

1
n

n∑
i=1

φb
(
b0i , ..., b

t
i, wi

)
→ E

[
φb
(
σ0Ẑ0, ..., σtẐt,W

)]
(232)

almost surely, where (Z0, ..., Zt) and
(
Ẑ0, ..., Ẑt

)
are independent of X0 and W , and Zi, Ẑi ∼

N (0, 1),

2. for all r, s ∈ {0, 1, ..., t},

lim
n→∞

1
n

〈
hr+1,hs+1

〉 a.s.= lim
n→∞

1
m
〈mr,ms〉 , (233)

lim
n→∞

1
m
〈br, bs〉 a.s.= 1

δ
lim
n→∞

1
n
〈qr, qs〉 . (234)

Theorem 28 (Lindeberg’s principle for bounded distributions). Consider A,G ∈ Rm×n two ran-
dom matrices with independent entries such that |Aij | ≤ C1 and |Gij | ≤ C1 with probability 1, and
E [Aij ] = E [Gij ], E

[
A2
ij

]
= E

[
G2
ij

]
for any i ∈ [m], j ∈ [n]. Let D (q, p, v) ∈ Rm×n be such that its

(i, j)-th entry is

Dij (q, p, v) =


Aij , i < q or (i = q and j < p) ,
v, i = q and j = p,

Gij , otherwise.
(235)

Consider a function h : Rm×n → R such that h is thrice-differentiable w.r.t. each coordinate and
m∑
i=1

n∑
j=1

E
[∣∣∣∣∣ ∂3

∂v3h (D (i, j, v))
∣∣∣∣∣
]
≤ C2 (236)

for |v| ≤ C1. Then:
|E [h (A)]− E [h (G)]| ≤ 1

3C
3
1C2. (237)

Proof. We use ∂, ∂2 and ∂3 as short-hand notations for ∂
∂v ,

∂2

∂v2 and ∂3

∂v3 . We have:

|E [h (A)]− E [h (G)]| =

∣∣∣∣∣∣
m∑
i=1

n∑
j=1

E [h (D (i, j, Aij))− h (D (i, j, Gij))]

∣∣∣∣∣∣ (238)

(a)=

∣∣∣∣∣∣
m∑
i=1

n∑
j=1

1
6E
[
∂3h

(
D
(
i, j, vijA

))
A3
ij − ∂3h

(
D
(
i, j, vijG

))
G3
ij

]∣∣∣∣∣∣ (239)

≤
m∑
i=1

n∑
j=1

1
6
{
E
[∣∣∣∂3h

(
D
(
i, j, vijA

))∣∣∣ |Aij |3]+ E
[∣∣∣∂3h

(
D
(
i, j, vijG

))∣∣∣ |Gij |3]}
(240)
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≤
m∑
i=1

n∑
j=1

1
6C

3
1

{
E
[∣∣∣∂3h

(
D
(
i, j, vijA

))∣∣∣]+ E
[∣∣∣∂3h

(
D
(
i, j, vijG

))∣∣∣]} (241)

for some vijA between 0 and Aij and some vijG between 0 and Gij . Here to derive step (a), we use
Taylor’s theorem for h (D (i, j, Aij)), in particular,

h (D (i, j, Aij)) = h (D (i, j, 0)) +Aij∂h (D (i, j, 0)) + 1
2A

2
ij∂

2h (D (i, j, 0))

+ 1
6A

3
ij∂

3h
(
D
(
i, j, vAij

))
(242)

and similarly for h (D (i, j, Gij)). Observe that Aij and Gij are independent of D (i, j, 0). Using the
fact E [Aij ] = E [Gij ] and E

[
A2
ij

]
= E

[
G2
ij

]
, we arrive at (a). The proof is complete if

∣∣∣vijA ∣∣∣ ≤ C1

and
∣∣∣vijG ∣∣∣ ≤ C1. But this is immediate from that |Aij | ≤ C1 and |Gij | ≤ C1.
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