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Abstract

Consider the linear inverse problem of reconstructing a vector x0 ∈ Rn from a noisy linear
observation y = Ax0 + w, where A ∈ Rm×n is random with independent and identically
distributed entries, using the LASSO, which is the following optimization problem:

OPT (A) = min
x∈Rn

1
n

{
1
2 ‖Ax− y‖2

2 + λ ‖x‖1

}
.

Consider the asymptotic regime n → ∞ and m/n → δ > 0, δ 6= 1. For a given fixed λ > 0,
we show that universality (with respect to the randomness of A) holds for the LASSO cost
OPT (A). As an intermediate step in the proof, we obtain an extension of Kashin’s theorem,
which could be of independent interests.

1 Statement of the Result
Consider the linear model y = Ax0 + w, where x0 ∈ Rn is a vector to be reconstructed from the
observation y, A ∈ Rm×n is the (known) sensing matrix, and w ∈ Rm is the (unknown) noise.
When m < n, the problem is underdetermined, and is generally encountered in compressed sensing
and high-dimensional statistics. A common approach to this problem is to consider the LASSO:

OPT (A) = min
x∈Rn

1
n

{1
2 ‖Ax− y‖22 + λ ‖x‖1

}
(1)

= min
x∈Rn

1
n
C (x,A) , (2)

in which
C (x,A) = 1

2 ‖A (x− x0)−w‖22 + λ ‖x‖1 (3)

for a given pre-chosen parameter λ > 0. To lighten the notation, we have dropped the dependence
on x0, w and λ in C (x,A) and OPT (A). We focus on the asymptotic regime n→∞, thinking of
the above as a sequence (in n) of problem instances. The main purpose of this note is to establish
a universality property of OPT (A), stated in the following.

Theorem 1. Assume the following setting:
∗The result was proven during the preparation of the work [MN17], jointly by Andrea Montanari and the author

of this note.
†Department of Electrical Engineering, Stanford University
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• x0 = x0 (n) is drawn from the sequence {x0 (n)}n∈N such that the empirical distribution of
x0 (n) converges weakly to a probability measure associated with a random variable X0 ∈ R,
‖x0 (n)‖22 /n→ E

[
X2

0
]
≡ M2 <∞, ‖x0 (n)‖1 /n→ E [|X0|] ≡ M1 <∞, and ‖x0 (n)‖10

10 /n→
E
[
X10

0
]
≡ M10 <∞.

• A = A (n) ∈ Rm×n for m = m (n) that satisfies m/n → δ > 0, δ 6= 1, and entries of A (n)
are independent and identically distributed (i.i.d.), and

• w = w (n) is drawn from the sequence {w (n)}n∈N such that the empirical distribution of
w (n) converges weakly to a probability measure associated with a random variable W ∈ R,
‖w (n)‖22 /m→ E

[
W 2] ≡ σ2 > 0, and ‖w (n)‖44 /m→ E

[
W 4] <∞.

Further assume that each entry of A satisfies the following regularity conditions: E [Aij ] = 0,
E
[
(
√
mAij)2

]
= 1, and E

[
|
√
mAij |p

]
= Kp <∞ for some p > 4, where Kp is a constant indepen-

dent of n (although we allow the distribution of
√
mAij to be dependent on n).

Fix λ > 0. Then OPT (A)→ OPT∗ in probability as n→∞, where OPT∗ = OPT∗ (δ, λ, σ, pX0)
a constant.

Note that the case of Gaussian sensing matrix Aij ∼ N (0, 1/m) is covered by the above theorem.
Also note that OPT∗ is insensitive to the exact details of the distribution of the entries, and hence
this is a universality phenomenon.

A closely related result was proven in [KM11], where universality was established for the cost of
the box-constrained LASSO. The box constraint was crucial, and it is a non-trivial task to extend
their proof to the LASSO being considered here. Some relevant universality results can be found
further in [BLM15, OT15, MN17].

As in [MN17], the conditions on boundedness of ‖x0 (n)‖10
10 /n and ‖w (n)‖44 /m are not critical

and can be weakened to boundedness of ‖x0 (n)‖2+ε
2+ε /n and ‖w (n)‖2+ε′

2+ε′ /m, for some ε, ε′ > 0.
In the below, after a note on notations, we give a formula for OPT∗ and state the analog of

Theorem 1 for Gaussian sensing matrices. Then the main focus of the rest of this note is on proving
Theorem 1, in which we first take a detour to Kashin’s theorem in Section 2.

1.1 Notations

We use boldfaced lower-case letters (e.g. x) for vectors and boldface upper-case letters (e.g. A)
for matrices. As usual, N, R, R+ and R++ denote the set of natural numbers, real numbers,
non-negative real numbers, and positive real numbers respectively. For n ∈ N, [n] denotes the set
{1, 2, ..., n}. For a set S ⊆ [n], S̄ denotes its complement [n] \S.

For x ∈ Rn and a set S ⊆ [n], xS denotes a vector in Rn in which its i-th entry is equal to xi
if i ∈ S and 0 otherwise. Likewise for A ∈ Rm×n, AS denotes a matrix in Rm×n in which its i-th
column is equal to the i-th column of A if i ∈ S and the all-zero column vector otherwise.

For A ∈ Rm×n, we use σmin (A) and σmax (A) for respectively the smallest and largest singular
values of A. We follow the convention that singular values are non-negative. We denote the kernel
of A and its orthogonal complement as ker (A) and ker (A)⊥.

1.2 Formula for OPT∗ and the Gaussian Case

We give here the formula for OPT∗, which can be deduced using the approximate message passing
algorithm. See [BM11, BM12] for more details. An alternative approach using the Gordon’s
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Gaussian min-max theorem, which is presented in [Sto13, OTH13, TOH15, TAH16], also yields a
formula for OPT∗. In fact, the following result can be deduced from both of these lines of work.

Theorem 2. Assume the setting in Theorem 1. Let G denote the Gaussian counterpart of A, i.e.
Gij ∼ N (0, 1/m) i.i.d. We have OPT (G)→ OPT∗ in probability as n→∞.

We denote by η : R×R+ → R the soft-thresholding function η (x; θ) = sign (x) max (0, |x| − θ).
Let τ∗ > 0 and α > 0 be such that

τ2
∗ = σ2 + 1

δ
E
[
(η (X0 + τ∗Z;ατ∗)−X0)2

]
, (4)

λ = ατ∗

[
1− 1

δ
E
[
η′ (X0 + τ∗Z;ατ∗)

]]
, (5)

where Z ∼ N (0, 1) independent of X0, and η′ denotes the derivative of η w.r.t. the first argument.
Then OPT∗ is given by

OPT∗ = δτ2
∗

2

(
1− 1

δ
P (|X0 + τ∗Z| ≥ ατ∗)

)2
+ λE [η (|X0 + τ∗Z| ;ατ∗)] . (6)

2 Kashin’s theorem
Kashin’s theorem is a cornerstone result in asymptotic geometric analysis. It establishes the ex-
istence of a subspace of Rn of dimension proportional to n, in which the `2 and `1 norms are
equivalent. Known constructions include the kernel of A or the range of AT , for A ∈ Rm×n being
a random sub-Gaussian matrix with m < n. See [MP03, LPR+05].

The proof of Theorem 1 requires the following extension of Kashin’s theorem, which we believe
could be of independent interests.

Proposition 3. Let A ∈ Rm×n be satisfying the regularity condition in Theorem 1, and m/n →
δ > 0, δ 6= 1. Then there exists a constant c = c (δ,K4) ∈ (0, 1) such that

P
(
∀x ∈ ker (A) : ‖x‖1 ≥ c

√
n ‖x‖2

)
→ 1 (7)

as n → ∞, where K4 = E
[
(
√
mAij)4

]
. In particular, the above probability is lower-bounded by

1− exp (−c̃n) for some constant c̃ = c̃ (δ,K4) > 0.

With recent advances in random matrix theory, results of the above type could have been
proven. We however are not aware of a reference, and hence provide here a proof.

To prove Proposition 3, we first rephrase a result from [Tik16], stated below.

Theorem 4. For any ζ > 0 and κ ∈ (0, 1), there exist u, v > 0 and n0 ∈ N depending only on ζ
and κ such that the following holds. Let n1, n2 ∈ N satisfy n1 ≥ max {n0, n2/κ}, and X ∈ Rn1×n2

with i.i.d. entries, such that for some ω > 0,

sup
γ∈R

P (|Xij − γ| ≤ ω) ≤ 1− ζ (8)

Then P
(
σmin (X) ≤ ωu√n1

)
≤ exp (−vn1). In particular, the exponent constant on the right-hand

side is
v = min

{
c1 (1− κ) , c2

(
κ1/2 − κ1/3

)2
, c3

(
κ1/2 − κ

) (
κ1/4 − κ1/3

)}
(9)

with positive constants c1, c2 and c3 that depend only on ζ.
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Corollary 5. Let A ∈ Rm×n be satisfying the regularity condition in Theorem 1, and m = bδnc
for δ ∈ (0, 1). Let K4 = E

[
(
√
mAij)4

]
. Fix κ ∈ (0, δ). There exist u, v > 0 that depend only on κ

and K4 such that

P (∀S ⊆ [n] s.t. |S| = κn : σmin (AS) ≤ u) ≤ exp
[
−
(
δv − κ log

(
e

κ

))
n

]
(10)

for sufficiently large n. In particular, v is given by Eq. (9) with the constants c1, c2 and c3
depending only on K4.

Proof. Let Xij =
√
mAij . One can easily show that

sup
γ∈R

P
(
|Xij − γ| ≤

1
2

)
≤ 1−min

{
3
11 ,

9∣∣16
√
K4 − 7

∣∣
}

(11)

Indeed, in particular, we can assume E
[
X3
ij

]
≥ 0, since the left-hand side is the same for Xij and

−Xij . Then the Cauchy-Schwarz’s inequality yields

P
(

(Xij − γ)2 ≥ 1
4

)
≥

(
E
[
(Xij − γ)2

]
− 1/4

)2

E
[(

(Xij − γ)2 − 1/4
)2
] ≥ (

3/4 + γ2)2
√
K4 + 6γ2 + γ4 (12)

which easily implies the claim. Hence, by Theorem 4, for sufficiently large n, there exist positive
constants u = u (κ,K4) and v = v (κ,K4) such that

P (σmin (AS) ≤ u) ≤ exp (−δvn) (13)

for any S ⊆ [n], |S| = κn, and v is as described by the corollary statement. The union bound then
yields

P (∀S s.t. |S| = κn : σmin (AS) ≤ u) ≤
(
n

κn

)
exp (−δvn) ≤ exp

[
−
(
δv − κ log

(
e

κ

))
n

]
(14)

which completes the proof.

Proof of Proposition 3. For δ > 1, we have almost surely,

lim
n→∞

σmin (A) = 1− 1√
δ
> 0 (15)

by the Bai-Yin law, and therefore, ker (A) = {0} with probability converging to 1 as n → ∞.
Hence the statement is immediate in this case.

Consider δ ∈ (0, 1). We prove the following equivalent statement: there exists a constant
c = c (δ,K4) ∈ (0, 1) such that

P
(
∀x ∈ Rn s.t. ‖x‖1 < c

√
n ‖x‖2 : x /∈ ker (A)

)
→ 1 (16)

as n → ∞. Consider x 6= 0 such that ‖x‖1 ≤ c
√
n ‖x‖2, for some c ∈ (0, 1). Let S =

{i : |xi| ≥ ‖x‖2 c/ (κ
√
n)} for some κ ∈ (0, δ). Then:

‖xS̄‖
2
2 ≤

c

κ
√
n
‖x‖2 ‖xS̄‖1 ≤

c

κ
√
n
‖x‖2 ‖x‖1 ≤

c2

κ
‖x‖22 (17)
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‖xS‖22 = ‖x‖22 − ‖xS̄‖
2
2 ≥ ‖x‖

2
2

(
1− c2

κ

)
(18)

|S| ≤
∑
i∈S

|xi|
‖x‖2 c/ (κ

√
n) ≤

‖x‖1
‖x‖2 c/ (κ

√
n) ≤ κn (19)

As n→∞, ‖AxS̄‖2 ≤
(
1/
√
δ + 1

)
‖xS̄‖2 eventually by the Bai-Yin law. Also, we have ‖AxS‖2 =

‖ASxS‖2 ≥ σmin (AS) ‖xS‖2. By Corollary 5, for sufficiently large n, with probability at least
1 − exp [− (δv − κ log (e/κ))n], σmin (AS) > u for some u = u (κ,K4) > 0 and v = v (κ,K4) > 0
given in Eq. (9). Then given δv > κ log (e/κ), with probability converging to 1 as n→∞,

‖Ax‖2 = ‖A (xS + xS̄)‖2 ≥ ‖AxS‖2 − ‖AxS̄‖2 ≥

u
√

1− c2

κ
−
( 1√

δ
+ 1

)√
c2

κ

 ‖x‖2 (20)

which implies that any such x would not belong to ker (A) if

u

√
1− c2

κ
>

( 1√
δ

+ 1
)√

c2

κ
, δv > κ log

(
e

κ

)
,

c2

κ
< 1, 0 < κ < δ, 0 < c < 1.

From Eq. (9), we see that for a fixed δ ∈ (0, 1), there exists κ∗ = κ∗ (δ,K4) ∈ (0, δ) such that the
second constraint is satisfied with any κ ∈ (0, κ∗). Then choosing

κ = κ∗

2 , c =
√√√√√ u2κ∗

4
[
u2 +

(
1 + 1/

√
δ
)2
] (21)

completes the proof.

3 Proof of Theorem 1
We first start with an application of Proposition 3 to the LASSO.

Lemma 6. Consider the LASSO problem (2), with A satisfying the regularity condition of Theorem
(1). Let x̂ (A) be any of the LASSO minimizer. Then with probability converging to 1 as n→∞,
‖x̂ (A)‖22 /n ≤ T <∞ for some T = T (M1,M2,K4, λ, σ, δ) a constant.

Proof. Let x̂ = x̂ (A) for brevity. Decompose x̂ = x̂‖+ x̂⊥ where x̂‖ ∈ ker (A) and x̂⊥ ∈ ker (A)⊥.
Let c0 = 100

(
λM1 + δσ2/2

)
. We have

1
2 ‖A (x̂− x0)−w‖22 + λ ‖x̂‖1 ≤ C (x0,A) = 1

2 ‖w‖
2
2 + λ ‖x0‖1 ≤ nc0 (22)

for sufficiently large n. By Proposition 3, with probability converging to 1, for some constant
c = c (δ,K4) ∈ (0, 1),

∥∥∥x̂‖∥∥∥2

2
≤ 1
c2n

∥∥∥x̂‖∥∥∥2

1

(a)
≤ 1
c2n

(‖x̂‖1 + ‖x̂⊥‖1)2 ≤ 2
c2n

(
‖x̂‖21 + ‖x̂⊥‖21

) (b)
≤ 2
c2λ2n

n2c2
0 + 2

c2 ‖x̂⊥‖
2
2

(23)
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where (a) is by the triangular inequality and (b) is by Eq. (22). Also, with probability converging
to 1,

‖x̂⊥‖22
(a)
≤
( √

δ

1−
√
δ

)2

‖Ax̂⊥‖22 =
( √

δ

1−
√
δ

)2

‖Ax̂‖22 (24)

(b)
≤
( √

δ

1−
√
δ

)2

(‖A (x̂− x0)−w‖2 + ‖Ax0‖2 + ‖w‖2)2 (25)

(c)
≤
( √

δ

1−
√
δ

)2 (
‖A (x̂− x0)−w‖2 +

( 1√
δ

+ 1
)
‖x0‖2 + ‖w‖2

)2
(26)

(d)
≤
( √

δ

1−
√
δ

)2 (√
2nc0 +

( 1√
δ

+ 1
)√

M2n+
√
δσ2n

)2
+ 100n (27)

where (a) and (c) are by the Bai-Yin law, (b) is by the triangular inequality, and (d) is by Eq. (22)
and holds for n sufficiently large. The proof is complete by noticing that ‖x̂‖22 =

∥∥∥x̂‖∥∥∥2

2
+‖x̂⊥‖22.

We are ready to prove Theorem 1. The idea is to consider the elastic net:

OPTρ (A) = min
x∈Rn

1
n
Cρ (x,A) , Cρ (x,A) = 1

2 ‖A (x− x0)−w‖22 + λ ‖x‖1 + ρ

2 ‖x‖
2
2 (28)

for ρ > 0. We expect that as ρ→ 0, OPTρ (A) yields OPT (A). On the other hand, an inspection
of [MN17] leads us to the following handy result. Let h−k : R → [0, 1] be a thrice-continuously
differentiable and non-increasing mapping such that h−k (x) = 1 for x ≤ −1/k and h−k (x) = 0 for
x ≥ 0. Let h+

k (x) = h−k (x− 1/k). It is easy to see that h+
k (x)→ I (x ≤ 0) and h−k (x)→ I (x < 0)

as k →∞, for any x ∈ R. We have the following.

Theorem 7. Assume the setting in Theorem 1. We have

E
[
h−k (OPTρ (A)− `)

]
− E

[
h−k (OPTρ (G)− `)

]
→ 0 (29)

as n→∞, for any ` ∈ R, any k and a given fixed ρ > 0.

Proof of Theorem 1. We have with probability converging to 1,

OPTρ (A) ≥ OPT (A) ≥ OPTρ (A)− ρ

2n ‖x̂ (A)‖22 ≥ OPTρ (A)− ρT
2 (30)

where x̂ (A) is any minimizer to OPT (A), and the last inequality is by Lemma 6. Note that this
also applies to G. Then for any ε > 0,

P (OPT (A) ≤ OPT∗ − ε) ≤ P
(

OPTρ (A) ≤ OPT∗ − ε+ ρT
2

)
+ on (1) (31)

≤ E
[
h+
k

(
OPTρ (A)−OPT∗ + ε− ρT

2

)]
+ on (1) (32)

= E
[
h−k

(
OPTρ (A)−OPT∗ + ε− ρT

2 −
1
k

)]
+ on (1) (33)

(a)= E
[
h−k

(
OPTρ (G)−OPT∗ + ε− ρT

2 −
1
k

)]
+ on (1) (34)
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≤ P
(

OPTρ (G) ≤ OPT∗ − ε+ ρT
2 + 1

k

)
+ on (1) (35)

≤ P
(

OPT (G) ≤ OPT∗ − ε+ ρT
2 + 1

k

)
+ on (1) (36)

where we use Theorem 7 in step (a). For sufficiently small ρ and sufficiently large k, the right-hand-
side of the above tends to 0 as n→∞, by Theorem 2. Likewise, P (OPT (A) ≥ OPT∗ + ε)→ 0 as
n→∞. The proof is complete.

4 Discussion
The proof of Theorem 1 comprises of two main tools: Theorem 2 for the Gaussian case, and Theorem
7 for universality of the elastic net cost. Kashin’s theorem plays a crucial role in establishing the
bound (30) and hence uniform convergence of the elastic net cost to the LASSO cost when n→∞
and ρ→ 0.

We discuss why it is helpful to take a detour to the elastic net. The proof of Theorem 7 adopts
the technique from [KM11], in particular, its proof for universality of the box-constrained LASSO
cost. The box constraint here refers to the optimization domain being ‖x‖∞ ≤ xmax for some
constant xmax, instead of x ∈ Rn. It does not seem trivial to modify the technique when without
this constraint. Although Lemma 6 implies that one can constrain the optimization domain of the
LASSO to ‖x‖∞ ≤

√
Tn, this bound does not appear sufficiently strong to prove universality. In

[MN17], it is shown that one can restrict the optimization domain of the elastic net to ‖x‖∞ ≤ g (n)
for some g (n) = Oρ

(
n0.104) (where the notation Oρ(·) hides the explicit dependency on ρ). This is

possible thanks to the fact ρ > 0, which makes the objective function strongly convex. This bound
is sufficient to prove universality for the elastic net cost.

The bound is established by proving ‖x̂ρ‖∞ = Oρ
(
n0.104) with high probability, where x̂ρ is the

elastic net minimizer. This may be much stronger than needed for dealing with the cost OPT (A)
or OPTρ (A). In fact, it could be shown that, for

OPTB (A) = min
‖x‖∞≤B

1
n
C (x,A) (37)

with B > 0 independent of n, we have

lim
B→∞

lim
n→∞

P
(∣∣∣OPTB (A)−OPT (A)

∣∣∣ > ε
)

= 0 (38)

for any ε > 0. This statement, along with universality of the box-constrained LASSO cost proven
in [KM11], produces an alternative proof of Theorem 1. Our proof of this statement, however, still
borrows the elastic net and certain techniques that have appeared in the proof of Theorem 7, so it
is worth no more than this paragraph.
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